Financial opportunities rarely appear as obvious signals. They emerge when price, risk, or expectations become temporarily misaligned. Artificial Intelligence (AI) does not magically predict the future—but it excels at detecting conditions where opportunities are statistically more likely to exist. This article explains how AI helps identify financial opportunities, from short‑term trading to long‑term macro investing, […]
Read MoreONNX(Open Neural Network Exchange)是一种通用的机器学习模型格式,支持 一次训练,多端部署。通过 ONNX,可以将使用 PyTorch、TensorFlow 训练的模型,高效地运行在 Android、iOS 以及 React Native、Flutter 等跨平台移动框架 上。 本文以 React Native 为核心,系统性介绍如何在移动端使用 ONNX,并进一步说明 端侧 AI(On-device AI) 与 本地大模型(Local LLM) 在实际业务中的价值。
Read MoreONNX(Open Neural Network Exchange)は、機械学習モデルを 一度学習し、複数の環境で再利用 できるフォーマットです。PyTorch や TensorFlow で学習したモデルを、Android / iOS / React Native / Flutter などのモバイル環境へ効率的に展開できます。 本記事では、React Native での ONNX 利用 を中心に、オンデバイス AI や Local LLM をモバイルアプリに組み込むための考え方と実践ポイントを解説します。
Read MoreONNX (Open Neural Network Exchange) เป็นฟอร์แมตที่เหมาะมากสำหรับการนำ Machine Learning ไปใช้งานบนอุปกรณ์มือถือ เพราะสามารถเทรนครั้งเดียว แล้วนำไปใช้งานได้ทั้งบน Android, iOS และ framework ข้ามแพลตฟอร์ม เช่น React Native และ Flutter บทความนี้อธิบายแนวคิดและแนวปฏิบัติในการใช้งาน ONNX บน mobile app โดยเน้นที่ React Native เป็นหลัก พร้อมอธิบายการใช้งาน Local LLM บนอุปกรณ์ (on-device) และตัวอย่าง use case ที่ใช้งานได้จริง
Read MoreONNX (Open Neural Network Exchange) is one of the most practical formats for deploying machine learning models on mobile devices. It allows you to train models once (PyTorch, TensorFlow, etc.) and run them efficiently across Android, iOS, and cross-platform frameworks like React Native and Flutter. This article explains how ONNX inference works on mobile, with […]
Read More引言 近年来,在中国的智慧农业示范项目、农业数字化工程和科研试点中,通过叶片图像由 AI 识别病害 的技术逐渐被熟知。然而,社会上也普遍存在一种误解:只要拍一张照片,AI 就能准确诊断作物病害。 在真实生产环境中,真正可落地的系统并不追求“完美诊断”。相反,它们被设计为 务实、可靠的决策支持工具,以适应中国农业区域差异大、气候条件复杂的现实。 叶片病害检测算法并不是用来替代农技人员或植保专家,而是作为 降低早期判断不确定性的辅助工具。系统不仅分析叶片图像,还会结合气象条件、作业记录等上下文信息。 本文将结合 Smart Farming Lite 的理念,从中国农业的实际出发,解释 叶片病害检测算法在现实系统中是如何工作的。
Read Moreはじめに 日本でも近年、葉の画像からAIが病害を検出する技術 が、実証事業やスマート農業プロジェクトを通じて広く知られるようになりました。一方で、「写真1枚で正確に病気を診断できる」という期待が先行しているケースも少なくありません。 実際の現場で使われているシステムは、完璧な診断を目的としたものではありません。日本の農業環境に適応するため、現実的で信頼できる判断支援 に重点を置いて設計されています。 葉の病害検出アルゴリズムは、農業指導員や専門家を置き換えるものではなく、初期段階の不確実性を減らすための補助ツール です。葉の画像情報に加え、気象条件や直近の作業履歴といった文脈情報を組み合わせて活用します。 本記事では、日本の農業現場に適した視点から、葉の病害検出アルゴリズムが実際にどのように機能しているのか を、Smart Farming Lite の考え方を例に解説します。
Read Moreบทนำ ในประเทศไทย เกษตรกรเริ่มได้ยินเรื่อง AI ตรวจจับโรคพืชจากใบ มากขึ้น ผ่านโครงการนำร่อง โครงการภาครัฐ และสตาร์ทอัพด้าน AgriTech หลายคนคาดหวังว่าระบบเหล่านี้จะสามารถวินิจฉัยโรคพืชได้อย่างแม่นยำและทันทีจากภาพเพียงภาพเดียว ในความเป็นจริง ระบบที่ใช้งานได้จริงถูกออกแบบมาให้ เน้นความเป็นไปได้และความน่าเชื่อถือ มากกว่าความสมบูรณ์แบบ โดยสอดคล้องกับสภาพการทำเกษตรของประเทศไทย อัลกอริทึมตรวจจับโรคใบพืชไม่ได้มีเป้าหมายเพื่อแทนที่นักวิชาการเกษตร แต่ถูกออกแบบมาเพื่อ ลดความไม่แน่นอนในระยะเริ่มต้น โดยอาศัยสัญญาณจากภาพใบพืช ร่วมกับบริบทท้องถิ่น เช่น สภาพอากาศ ความชื้น และกิจกรรมในแปลงที่ผ่านมา บทความนี้อธิบายว่า อัลกอริทึมตรวจจับโรคใบพืชทำงานอย่างไรจริง ๆ ในมุมที่สอดคล้องกับการทำเกษตรของไทย ผ่านแนวคิดของระบบเชิงปฏิบัติอย่าง Smart Farming Lite
Read MoreIntroduction When people hear AI leaf disease detection, they often imagine a system that instantly and perfectly diagnoses plant diseases from a single photo. In reality, the algorithms behind leaf disease detection are more pragmatic—and more reliable—than that. They are not designed to replace agronomists. They are designed to reduce uncertainty early, using visual signals […]
Read More引言 中国农业呈现出 经营主体多样化、区域差异大、劳动力老龄化加快 的特点。一方面,规模化农业和智慧农业被大力推动;另一方面,大量中小农户仍面临投入高、系统复杂、维护困难等现实问题。 Smart Farming Lite 正是为这种现实而设计的轻量化数字农业方案。它以智能手机为中心,不强制引入传感器设备,强调与农户现有生产习惯自然融合。 Smart Farming Lite 不追求“完美的数据采集”,而是聚焦一个更现实的问题: “今天,这块地应该做什么?”
Read More



