カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
オブジェクト検出は、セキュリティ、自動化、ロボティクスなどの業界で不可欠な技術となっています。YOLO(You Only Look Once)は、そのスピードと精度の高さから最も人気のあるリアルタイムオブジェクト検出モデルの1つです。本記事では、カスタムデータセットを使用してYOLOをトレーニングし、実際のアプリケーションで使用できるようにする方法を説明します。
ステップ1:依存関係のインストール
まず、必要な依存関係をインストールします。最新のYOLOv5またはYOLOv8を使用すると、より簡単にトレーニングできます。
# YOLOv5リポジトリをクローン
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# 必要なパッケージをインストール
pip install -r requirements.txt
YOLOv8の場合は、Ultralyticsパッケージを直接インストールできます:
pip install ultralytics
ステップ2:データセットの準備
YOLOは特定のフォーマットでデータを必要とし、各画像には対応するアノテーションファイル(YOLOフォーマット)が必要です:
<class_id> <x_center> <y_center> <width> <height>
すべての値は0〜1の範囲で正規化する必要があります。データセットのフォルダ構成は以下のようになります:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
data.yaml ファイルの作成
このファイルは、データセットの構成とクラス名を定義します:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # クラス数
names: ['person', 'car'] # クラス名
ステップ3:モデルのトレーニング
YOLOv5をトレーニングするには、以下のコマンドを実行します:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
YOLOv8の場合は以下を使用します:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
ステップ4:トレーニングの進行状況を監視
YOLOはトレーニング中にさまざまなパフォーマンス指標を記録します。YOLOv5を使用している場合、結果は runs/train/exp/ に保存されます。トレーニングのパフォーマンスを可視化するには、TensorBoardを使用できます:
tensorboard --logdir=runs/train
ステップ5:モデルの評価とテスト
トレーニングが完了したら、新しい画像でモデルをテストします:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
YOLOv8の場合:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
ステップ6:デプロイ用のエクスポート
YOLOモデルは、複数のフォーマットでエクスポートできます:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
YOLOv8の場合:
yolo export model=runs/train/exp/weights/best.pt format=onnx
まとめ
カスタムデータセットを使用してYOLOをトレーニングすることで、セキュリティ、交通監視、自動化などのリアルワールドアプリケーションに対応したオブジェクト検出を実現できます。このステップバイステップガイドに従えば、データの準備、トレーニング、デプロイまでを効率的に進めることができます。
データセットの準備やトレーニング設定の最適化についてサポートが必要ですか?コメントでお知らせください!
Get in Touch with us
Related Posts
- AIによる予知保全 ― センサーから予測モデルまでの全体像
- 会計業務におけるAIアシスタント ― できること・できないこと
- なぜ中小企業はERPカスタマイズに過剰なコストを支払ってしまうのか — そしてその防ぎ方
- なぜ SimpliShop を開発したのか —— 日本の中小企業の成長を支えるための新しい EC プラットフォーム
- ファインチューニング vs プロンプトエンジニアリングを徹底解説 ― 日本企業がAIを活用するための実践ガイド ―
- 精密灌漑(Precision Irrigation)入門
- IoTセンサーよりも重要なのは「データ統合」―― スマート農業が本当に抱える課題とは
- モバイルアプリ開発提案書(React / React Native)
- AIバーティカル・インテグレーション:日本企業のDXを加速し、データ駆動型の高効率な組織へ
- 日本企業向け:AI導入を一歩ずつ進める実践ガイド 2025
- EVフリート管理は「AI最適化」が鍵
- 製造業とビジネスを変革する 7つの Machine Learning(機械学習)活用事例
- LSTMによる洪水・水位予測:日本の防災を強化するAIアプローチ
- SimpliMES Lite — 日本の中小製造業向け MES 提案書(日本語版)
- 介護ロボットとオープンソース技術 — 超高齢社会を支える未来のケアテクノロジー
- 中堅・中小製造業のためのスマートファクトリー入門
- 日本企業がAI搭載のカスタムシステムへ移行する理由
- なぜ成功しているオンラインストアは SimpliShop を選ぶのか — ビジネスを「作る・育てる・勝ち続ける」ための新しい標準
- AIの垂直統合(Vertical Integration of AI)—— これからのビジネスを決定づける新しい運営モデル
- AI予測システム — あなたの意思決定を“超能力”へ













