カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
オブジェクト検出は、セキュリティ、自動化、ロボティクスなどの業界で不可欠な技術となっています。YOLO(You Only Look Once)は、そのスピードと精度の高さから最も人気のあるリアルタイムオブジェクト検出モデルの1つです。本記事では、カスタムデータセットを使用してYOLOをトレーニングし、実際のアプリケーションで使用できるようにする方法を説明します。
ステップ1:依存関係のインストール
まず、必要な依存関係をインストールします。最新のYOLOv5またはYOLOv8を使用すると、より簡単にトレーニングできます。
# YOLOv5リポジトリをクローン
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# 必要なパッケージをインストール
pip install -r requirements.txt
YOLOv8の場合は、Ultralyticsパッケージを直接インストールできます:
pip install ultralytics
ステップ2:データセットの準備
YOLOは特定のフォーマットでデータを必要とし、各画像には対応するアノテーションファイル(YOLOフォーマット)が必要です:
<class_id> <x_center> <y_center> <width> <height>
すべての値は0〜1の範囲で正規化する必要があります。データセットのフォルダ構成は以下のようになります:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
data.yaml ファイルの作成
このファイルは、データセットの構成とクラス名を定義します:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # クラス数
names: ['person', 'car'] # クラス名
ステップ3:モデルのトレーニング
YOLOv5をトレーニングするには、以下のコマンドを実行します:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
YOLOv8の場合は以下を使用します:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
ステップ4:トレーニングの進行状況を監視
YOLOはトレーニング中にさまざまなパフォーマンス指標を記録します。YOLOv5を使用している場合、結果は runs/train/exp/ に保存されます。トレーニングのパフォーマンスを可視化するには、TensorBoardを使用できます:
tensorboard --logdir=runs/train
ステップ5:モデルの評価とテスト
トレーニングが完了したら、新しい画像でモデルをテストします:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
YOLOv8の場合:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
ステップ6:デプロイ用のエクスポート
YOLOモデルは、複数のフォーマットでエクスポートできます:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
YOLOv8の場合:
yolo export model=runs/train/exp/weights/best.pt format=onnx
まとめ
カスタムデータセットを使用してYOLOをトレーニングすることで、セキュリティ、交通監視、自動化などのリアルワールドアプリケーションに対応したオブジェクト検出を実現できます。このステップバイステップガイドに従えば、データの準備、トレーニング、デプロイまでを効率的に進めることができます。
データセットの準備やトレーニング設定の最適化についてサポートが必要ですか?コメントでお知らせください!
Get in Touch with us
Related Posts
- AIが実現する病院システムの垂直統合(Vertical Integration)
- Industrial AIにおけるAIアクセラレータ なぜ「チップ」よりもソフトウェアフレームワークが重要なのか
- 日本企業向け|EC・ERP連携に強いAI×ワークフロー型システム開発
- 信頼性の低い「スマート」システムが生む見えないコスト
- GPU vs LPU vs TPU:AIアクセラレータの正しい選び方
- LPUとは何か?日本企業向け実践的な解説と活用事例
- ソフトウェアエンジニアのためのサイバーセキュリティ用語マッピング
- モダンなサイバーセキュリティ監視・インシデント対応システムの設計 Wazuh・SOAR・脅威インテリジェンスを用いた実践的アーキテクチャ
- AI時代におけるクラシック・プログラミングの考え方
- SimpliPOSFlex 現場の「現実」に向き合うためのPOS(日本市場向け)
- 古典的プログラミング思考 ― Kernighan & Pike から学び続けること
- コードを書く前に:私たちが必ずお客様にお聞きする5つの質問
- なぜ利益を生むシステムでも「本当の価値」を持たないことがあるのか
- 彼女の世界(Her World)
- Temporal × ローカルLLM × Robot Framework 日本企業向け「止まらない・壊れない」業務自動化アーキテクチャ
- RPA × AI: なぜ「自動化」は知能なしでは破綻し、 知能は制御なしでは信頼されないのか
- 国境紛争・代理戦争をどうシミュレーションするか
- 検索とアクセスを最初に改善する 大学図書館の戦略的価値を最短で回復する方法
- 工場とリサイクル事業者をつなぐ、新しいスクラップ取引プラットフォームを開発しています
- Python で MES(製造実行システム)を開発する方法 ― 日本の製造現場に適した実践ガイド ―













