カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
オブジェクト検出は、セキュリティ、自動化、ロボティクスなどの業界で不可欠な技術となっています。YOLO(You Only Look Once)は、そのスピードと精度の高さから最も人気のあるリアルタイムオブジェクト検出モデルの1つです。本記事では、カスタムデータセットを使用してYOLOをトレーニングし、実際のアプリケーションで使用できるようにする方法を説明します。
ステップ1:依存関係のインストール
まず、必要な依存関係をインストールします。最新のYOLOv5またはYOLOv8を使用すると、より簡単にトレーニングできます。
# YOLOv5リポジトリをクローン
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# 必要なパッケージをインストール
pip install -r requirements.txt
YOLOv8の場合は、Ultralyticsパッケージを直接インストールできます:
pip install ultralytics
ステップ2:データセットの準備
YOLOは特定のフォーマットでデータを必要とし、各画像には対応するアノテーションファイル(YOLOフォーマット)が必要です:
<class_id> <x_center> <y_center> <width> <height>
すべての値は0〜1の範囲で正規化する必要があります。データセットのフォルダ構成は以下のようになります:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
data.yaml ファイルの作成
このファイルは、データセットの構成とクラス名を定義します:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # クラス数
names: ['person', 'car'] # クラス名
ステップ3:モデルのトレーニング
YOLOv5をトレーニングするには、以下のコマンドを実行します:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
YOLOv8の場合は以下を使用します:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
ステップ4:トレーニングの進行状況を監視
YOLOはトレーニング中にさまざまなパフォーマンス指標を記録します。YOLOv5を使用している場合、結果は runs/train/exp/ に保存されます。トレーニングのパフォーマンスを可視化するには、TensorBoardを使用できます:
tensorboard --logdir=runs/train
ステップ5:モデルの評価とテスト
トレーニングが完了したら、新しい画像でモデルをテストします:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
YOLOv8の場合:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
ステップ6:デプロイ用のエクスポート
YOLOモデルは、複数のフォーマットでエクスポートできます:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
YOLOv8の場合:
yolo export model=runs/train/exp/weights/best.pt format=onnx
まとめ
カスタムデータセットを使用してYOLOをトレーニングすることで、セキュリティ、交通監視、自動化などのリアルワールドアプリケーションに対応したオブジェクト検出を実現できます。このステップバイステップガイドに従えば、データの準備、トレーニング、デプロイまでを効率的に進めることができます。
データセットの準備やトレーニング設定の最適化についてサポートが必要ですか?コメントでお知らせください!
Get in Touch with us
Related Posts
- AIが検索に取って代わる時代:書き手と専門家はどう生き残るのか
- リサイクル事業のための金属価格予測 (日本市場向け・投機不要)
- チーズは誰が動かした?
- 日本向け:業務に最適化されたEコマースシステム設計
- AIの導入がシステムを壊すアンチパターン
- なぜ私たちは「ソフトウェアを作るだけ」ではないのか — システムを実際に動かすために
- Wazuh管理者向け 実践プロンプトパック
- なぜ政府におけるレガシーシステム刷新は失敗するのか(そして、実際に機能する方法とは)
- 日本の自治体が「本当に必要とする」Vertical AI活用ユースケース
- マルチ部門政府におけるデジタルサービス提供の設計(日本向け)
- デジタル行政サービスが本番稼働後に失敗する7つの理由
- 都道府県・市町村向けデジタルシステムのリファレンスアーキテクチャ
- 実践的GovTechアーキテクチャ:ERP・GIS・住民向けサービス・データ基盤
- なぜ緊急対応システムは Offline First で設計されるべきなのか(ATAK からの教訓)
- なぜ地方自治体のソフトウェアプロジェクトは失敗するのか —— コードを書く前に防ぐための考え方
- AIブームの後に来るもの:次に起きること(そして日本企業にとって重要な理由)
- システムインテグレーションなしでは、なぜリサイクル業界のAIは失敗するのか
- ISA-95 vs RAMI 4.0:日本の製造業はどちらを使うべきか(そして、なぜ両方が重要なのか)
- なぜローコードはトレンドから外れつつあるのか(そして何が置き換えたのか)
- 2025年に失敗した製品たち —— その本当の理由













