あなたのショップにパーソナライズされたレコメンド機能が登場!
Simplicoでは、オンラインショップの体験をよりスマートに、より効果的に進化させるために、常に新しい機能を開発しています。
今回は、ついに待望の新機能をリリースしました!
🎯 AIが自動学習する「商品レコメンデーション機能」
外部プラグインは不要。面倒な設定も不要。あなたのショップにすでに組み込まれています。
🔍 どうやって動くの?
訪問者が商品ページを見るたびに、システムは「誰がどのURLを見たか(匿名で)」を記録します。
それが積み重なることで、AIが次のようなインサイトを得るようになります:
「この商品を見た人は、他にどの商品も見ているか?」
📊 システムの流れ
graph TD
A["ユーザーがサイトを訪問"] --> B["セッションとURLを記録"]
B --> C["URLから商品IDを抽出"]
C --> D["ユーザー×商品マトリクスを作成"]
D --> E["AIが関連性を学習"]
E --> F["類似商品を予測"]
F --> G["商品ページにレコメンドを表示"]
🛍️ 例:「この商品を見た人はこんな商品も見ています」
たとえば、訪問者が iPhoneケース を閲覧したとします。
するとレコメンドとして以下のような商品が表示されるかもしれません:
- ワイヤレス充電器
- 画面保護フィルム
- スマホスタンド
- iPad mini ケース
これらはランダムではなく、実際のユーザーデータから導き出されています。
🧱 実装例(一部抜粋)
✅ アクセスログを記録するミドルウェア:
class UserLogMiddleware:
def __call__(self, request):
if "/product/" in request.path and request.session.session_key:
UserLog.objects.create(
session_key=request.session.session_key,
url=request.path
)
return self.get_response(request)
✅ URLから商品IDを抽出:
import re
def extract_product_id(url):
match = re.search(r"/product/(\d+)/", url)
return match.group(1) if match else None
✅ AIモデルのトレーニング:
from implicit.als import AlternatingLeastSquares
model = AlternatingLeastSquares(factors=50, iterations=15)
model.fit(matrix)
✅ 類似商品のレコメンド取得:
def recommend_similar(product_id, top_n=5):
index = product_map.get(str(product_id))
if index is None:
return []
similar = model.similar_items(index, N=top_n + 1)
return [get_product_by_index(i) for i, _ in similar]
⚙️ なぜこの機能が便利なのか?
- ✅ 顧客に関連商品を自然に紹介(クロスセル)
- ✅ 平均注文額の増加につながる
- ✅ 商品ページの滞在時間や再訪問率アップ
- ✅ ゲストユーザーでもパーソナライズが可能
🚀 今すぐ使えます!
この機能は、あなたのeコマース管理画面にすでに組み込まれています。
まだSimplicoをご利用でない方も、今すぐこちらからお問い合わせください!
Get in Touch with us
Related Posts
- Wazuh管理者向け 実践プロンプトパック
- なぜ政府におけるレガシーシステム刷新は失敗するのか(そして、実際に機能する方法とは)
- 日本の自治体が「本当に必要とする」Vertical AI活用ユースケース
- マルチ部門政府におけるデジタルサービス提供の設計(日本向け)
- デジタル行政サービスが本番稼働後に失敗する7つの理由
- 都道府県・市町村向けデジタルシステムのリファレンスアーキテクチャ
- 実践的GovTechアーキテクチャ:ERP・GIS・住民向けサービス・データ基盤
- なぜ緊急対応システムは Offline First で設計されるべきなのか(ATAK からの教訓)
- なぜ地方自治体のソフトウェアプロジェクトは失敗するのか —— コードを書く前に防ぐための考え方
- AIブームの後に来るもの:次に起きること(そして日本企業にとって重要な理由)
- システムインテグレーションなしでは、なぜリサイクル業界のAIは失敗するのか
- ISA-95 vs RAMI 4.0:日本の製造業はどちらを使うべきか(そして、なぜ両方が重要なのか)
- なぜローコードはトレンドから外れつつあるのか(そして何が置き換えたのか)
- 2025年に失敗した製品たち —— その本当の理由
- Agentic AI Explained: Manus vs OpenAI vs Google — 日本企業が知るべき選択肢
- AIが実現する病院システムの垂直統合(Vertical Integration)
- Industrial AIにおけるAIアクセラレータ なぜ「チップ」よりもソフトウェアフレームワークが重要なのか
- 日本企業向け|EC・ERP連携に強いAI×ワークフロー型システム開発
- 信頼性の低い「スマート」システムが生む見えないコスト
- GPU vs LPU vs TPU:AIアクセラレータの正しい選び方













