あなたのショップにパーソナライズされたレコメンド機能が登場!
Simplicoでは、オンラインショップの体験をよりスマートに、より効果的に進化させるために、常に新しい機能を開発しています。
今回は、ついに待望の新機能をリリースしました!
🎯 AIが自動学習する「商品レコメンデーション機能」
外部プラグインは不要。面倒な設定も不要。あなたのショップにすでに組み込まれています。
🔍 どうやって動くの?
訪問者が商品ページを見るたびに、システムは「誰がどのURLを見たか(匿名で)」を記録します。
それが積み重なることで、AIが次のようなインサイトを得るようになります:
「この商品を見た人は、他にどの商品も見ているか?」
📊 システムの流れ
graph TD
A["ユーザーがサイトを訪問"] --> B["セッションとURLを記録"]
B --> C["URLから商品IDを抽出"]
C --> D["ユーザー×商品マトリクスを作成"]
D --> E["AIが関連性を学習"]
E --> F["類似商品を予測"]
F --> G["商品ページにレコメンドを表示"]
🛍️ 例:「この商品を見た人はこんな商品も見ています」
たとえば、訪問者が iPhoneケース を閲覧したとします。
するとレコメンドとして以下のような商品が表示されるかもしれません:
- ワイヤレス充電器
- 画面保護フィルム
- スマホスタンド
- iPad mini ケース
これらはランダムではなく、実際のユーザーデータから導き出されています。
🧱 実装例(一部抜粋)
✅ アクセスログを記録するミドルウェア:
class UserLogMiddleware:
def __call__(self, request):
if "/product/" in request.path and request.session.session_key:
UserLog.objects.create(
session_key=request.session.session_key,
url=request.path
)
return self.get_response(request)
✅ URLから商品IDを抽出:
import re
def extract_product_id(url):
match = re.search(r"/product/(\d+)/", url)
return match.group(1) if match else None
✅ AIモデルのトレーニング:
from implicit.als import AlternatingLeastSquares
model = AlternatingLeastSquares(factors=50, iterations=15)
model.fit(matrix)
✅ 類似商品のレコメンド取得:
def recommend_similar(product_id, top_n=5):
index = product_map.get(str(product_id))
if index is None:
return []
similar = model.similar_items(index, N=top_n + 1)
return [get_product_by_index(i) for i, _ in similar]
⚙️ なぜこの機能が便利なのか?
- ✅ 顧客に関連商品を自然に紹介(クロスセル)
- ✅ 平均注文額の増加につながる
- ✅ 商品ページの滞在時間や再訪問率アップ
- ✅ ゲストユーザーでもパーソナライズが可能
🚀 今すぐ使えます!
この機能は、あなたのeコマース管理画面にすでに組み込まれています。
まだSimplicoをご利用でない方も、今すぐこちらからお問い合わせください!
Get in Touch with us
Related Posts
- 古典的プログラミング思考 ― Kernighan & Pike から学び続けること
- コードを書く前に:私たちが必ずお客様にお聞きする5つの質問
- なぜ利益を生むシステムでも「本当の価値」を持たないことがあるのか
- 彼女の世界(Her World)
- Temporal × ローカルLLM × Robot Framework 日本企業向け「止まらない・壊れない」業務自動化アーキテクチャ
- RPA × AI: なぜ「自動化」は知能なしでは破綻し、 知能は制御なしでは信頼されないのか
- 国境紛争・代理戦争をどうシミュレーションするか
- 検索とアクセスを最初に改善する 大学図書館の戦略的価値を最短で回復する方法
- 工場とリサイクル事業者をつなぐ、新しいスクラップ取引プラットフォームを開発しています
- Python で MES(製造実行システム)を開発する方法 ― 日本の製造現場に適した実践ガイド ―
- MES・ERP・SCADA の違いとは? ― 製造業における役割と境界を分かりやすく解説
- なぜソフトウェア開発の学習はこんなにも「つらい」のか ― そして、その解決方法
- 企業はどちらを選ぶのか:GPT型AIか、Gemini型AIか
- GPT-5.2 が GPT-5.1 より真価を発揮する実務ユースケース
- ChatGPT 5.2 と 5.1 の違い ― たとえ話でわかりやすく解説
- なぜ成長する企業は 既製ソフトウェアでは限界を迎えるのか ― 成功している企業が選ぶ次の一手 ―
- コンピュータビジョンのエッジ化と低リソース環境:日本企業における課題と新たな機会*
- Simplico — 企業向けAIオートメーション & カスタムソフトウェア開発(日本市場向け)
- AIによる予知保全 ― センサーから予測モデルまでの全体像
- 会計業務におけるAIアシスタント ― できること・できないこと













