Why Understanding Design Patterns is Essential in Large Projects Like Odoo

In large-scale projects like Odoo, where the system is designed to be modular, extensible, and adaptable for diverse business needs, design patterns play a crucial role. They provide proven solutions to common problems in software design, ensuring that the system remains maintainable, scalable, and efficient over time.

Here’s why understanding design patterns is critical:


1. Promote Code Reusability

  • Design patterns provide standardized solutions, enabling developers to reuse code structures across modules and features.
  • In Odoo, modules share common patterns (e.g., Active Record for models) to reduce redundancy and improve efficiency.

2. Ensure Maintainability

  • Large projects often involve multiple developers over long periods. Design patterns make the codebase easier to read, understand, and maintain.
  • For instance, the MVC pattern in Odoo separates concerns, making updates to business logic (Model) independent of changes in the UI (View).

3. Facilitate Scalability

  • As businesses grow, their ERP systems must adapt to increased data and complexity. Patterns like Lazy Loading and Registry in Odoo help manage resources effectively and scale the application.

4. Enhance Collaboration

  • Design patterns provide a common language among developers, making collaboration more effective.
  • In Odoo, knowing patterns like Decorator and Observer allows teams to extend functionalities without disrupting the core logic.

5. Enable Modularity

  • Odoo's modular architecture relies on patterns to ensure that individual components (modules) can be added, removed, or modified independently.
  • Patterns like Dependency Injection ensure modules interact without being tightly coupled.

6. Reduce Development Time

  • Instead of reinventing the wheel, developers can apply existing patterns to solve complex problems quickly.
  • For example, using the Factory pattern simplifies the creation of new models or workflows in Odoo.

7. Improve Code Quality

  • Patterns encourage developers to follow best practices, resulting in a cleaner and more robust codebase.
  • For instance, applying the Singleton pattern to manage a single instance of the environment ensures consistent data access across Odoo modules.

Conclusion

Understanding design patterns is indispensable for developers working on large projects like Odoo. They not only improve the technical quality of the system but also ensure that it can evolve to meet changing business requirements. By mastering these patterns, developers can contribute to a system that is reliable, adaptable, and future-proof.

1.Model-View-Controller (MVC)

Description: MVC is a design pattern that separates the application into three interconnected components:

  • Model: Manages the data and business logic.
  • View: Handles the user interface and displays the data.
  • Controller: Processes user input and interacts with the model and view.
  • Diagram:
    classDiagram
    class Model {
        +data
        +create()
        +read()
        +update()
        +delete()
    }
    class View {
        +display(data)
        +getInput()
    }
    class Controller {
        +handleRequest()
        +updateModel(data)
    }
    Model --> Controller : updates
    Controller --> View : renders
    View --> Controller : user actions

2.Active Record Pattern

Description: Each object represents a single row in a database table, and methods are provided to interact with the database (e.g., save(), delete()).

-Use in Odoo: Odoo models directly map to database tables, and the ORM manages CRUD operations.

-Diagram:

classDiagram
    class ActiveRecord {
        +id
        +save()
        +delete()
        +find()
    }
    ActiveRecord <|-- Partner : ORM Model

3.Observer Pattern

Description: Allows objects (observers) to subscribe to updates from another object (subject). When the subject changes state, all observers are notified.

  • Use in Odoo: Used in computed fields, onchange methods, and workflows.

  • Diagram:

    classDiagram
    class Subject {
        +attach(observer)
        +detach(observer)
        +notify()
    }
    class Observer {
        +update()
    }
    Subject --> Observer : notifies

4.Dependency Injection

Description: A design principle where dependencies are injected into a class rather than being created within it. This makes code more modular and testable.

Use in Odoo: Modules depend on external services (e.g., third-party APIs, registries) injected at runtime.

  • Diagram:
    classDiagram
    class Service {
        +operation()
    }
    class Module {
        +Service service
    }
    Module --> Service : injects

5.Registry Pattern

Description: Maintains a central registry for storing and accessing objects dynamically at runtime.

Use in Odoo: The model registry stores all models for runtime access.

  • Diagram:
    classDiagram
    class Registry {
        +getModel(name)
        +registerModel(name, model)
    }
    class Model {
        +operation()
    }
    Registry --> Model : stores

6.Lazy Loading

Description: Objects are only loaded or initialized when they are accessed to save memory and processing time.

Use in Odoo: Relational fields (e.g., many2one) are fetched only when accessed.

Diagram:

classDiagram
    class Proxy {
        +request()
    }
    class RealObject {
        +operation()
    }
    Proxy --> RealObject : initializes on demand

7.Singleton Pattern

Description: Ensures that only one instance of a class exists throughout the application.

Use in Odoo: Odoo's environment (odoo.api.Environment) ensures a single instance per request.

Diagram:

classDiagram
    class Singleton {
        -instance
        +getInstance()
    }

8.Decorator Pattern

Description: Dynamically adds functionality to a class without modifying its structure.

Use in Odoo: Python decorators like @api.depends and @api.onchange add ORM-specific behavior.

Diagram:

classDiagram
    class Component {
        +operation()
    }
    class Decorator {
        +operation()
    }
    class ConcreteComponent {
        +operation()
    }
    Decorator --> Component
    ConcreteComponent --> Decorator

9.Template Method Pattern

Description: Defines the skeleton of an algorithm in a base class, while allowing subclasses to override specific steps.

Use in Odoo: Abstract methods in models can be overridden to customize behavior.

Diagram:

classDiagram
    class AbstractClass {
        +templateMethod()
        #primitiveOperation1()
        #primitiveOperation2()
    }
    class ConcreteClass {
        #primitiveOperation1()
        #primitiveOperation2()
    }
    AbstractClass --> ConcreteClass

10.Factory Pattern

Description: A method or class that creates objects without specifying the exact class to instantiate.

Use in Odoo: The ORM creates model instances dynamically based on metadata.

  • Diagram:
    classDiagram
    class Factory {
        +createProduct(type)
    }
    class Product {
        +operation()
    }
    class ConcreteProduct1
    class ConcreteProduct2
    Factory --> Product
    Product <|-- ConcreteProduct1
    Product <|-- ConcreteProduct2

11.Composite Pattern

Description: Treats individual objects and compositions of objects uniformly. Often used for hierarchical structures.

Use in Odoo: Hierarchies like categories or parent-child relationships.

Diagram:

classDiagram
    class Component {
        +operation()
    }
    class Leaf {
        +operation()
    }
    class Composite {
        +operation()
        +add(component)
        +remove(component)
    }
    Composite --> Component
    Leaf --> Component

12.Proxy Pattern

Description: A placeholder object that controls access to another object.

Use in Odoo: Used for access control and deferred loading.

Diagram:

classDiagram
    class Proxy {
        +request()
    }
    class RealObject {
        +request()
    }
    Proxy --> RealObject : delegates

13.Builder Pattern

Description: Constructs complex objects step by step.

Use in Odoo: Wizards (transient models) often follow the builder approach for multi-step workflows.

Diagram:

classDiagram
    class Builder {
        +buildPart()
        +getResult()
    }
    class ConcreteBuilder {
        +buildPart()
        +getResult()
    }
    class Director {
        +construct()
    }
    Builder <|-- ConcreteBuilder
    Director --> Builder

14.Strategy Pattern

Description: Encapsulates algorithms and makes them interchangeable.

Use in Odoo: Payment processors and shipping methods often use strategy patterns to switch between implementations.

Diagram:

classDiagram
    class Context {
        +setStrategy(strategy)
        +executeStrategy()
    }
    class Strategy {
        +execute()
    }
    class ConcreteStrategyA
    class ConcreteStrategyB
    Context --> Strategy
    Strategy <|-- ConcreteStrategyA
    Strategy <|-- ConcreteStrategyB

These explanations and diagrams cover the key patterns used in Odoo and provide a visual representation for better understanding.

Articles

Our Products


Articles

Our Products


Get in Touch with us

Speak to Us or Whatsapp(+66) 83001 0222

Chat with Us on LINEiiitum1984

Our HeadquartersChanthaburi, Thailand