Mastering Rasa Pipeline and Policies: A Guide to Building Smarter Chatbots
Rasa’s pipeline and policies are at the core of its ability to process user inputs, classify intents, extract entities, and determine the next best action. Whether you’re building a chatbot for customer support, a virtual assistant, or any conversational AI, understanding how these components work will help you design a smarter and more efficient bot.
In this blog post, we’ll break down the pipeline components, explain the role of policies, and include a visual Mermaid.js diagram to show how everything connects.
What is a Rasa Pipeline?
The Rasa pipeline is a sequence of components that processes user input and prepares it for intent classification and entity recognition. These components handle tokenization, feature extraction, and more, creating a structured representation of the text.
Think of the pipeline as a conveyor belt, where each component performs a specific task in the text processing workflow.
Key Components of the Pipeline
1.Tokenizer
- Breaks user input into smaller units (tokens) like words or characters.
- Critical for languages like Thai, which do not use spaces between words.
Example:
- name: "custom_components.thai_tokenizer.ThaiTokenizer"
model: "newmm"
2.Featurizers
- Convert tokens into numerical representations (vectors).
- Example components:
CountVectorsFeaturizer: For word or character n-grams.RegexFeaturizer: For pattern-based features like phone numbers or dates.
Example:
- name: CountVectorsFeaturizer
analyzer: "char_wb"
min_ngram: 2
max_ngram: 4
3.Entity Extractors
- Extract structured data like names, locations, or dates.
- Example components:
DucklingEntityExtractor: Automatically detects dates, times, and numbers.RegexEntityExtractor: Captures entities using regex patterns.
Example:
- name: DucklingEntityExtractor
dimensions: ["time", "number"]
4.Intent Classifier
- Identifies the intent of the user’s input and extracts entities simultaneously using the
DIETClassifier.
Example:
- name: DIETClassifier
epochs: 100
entity_recognition: True
5.Fallback Mechanism
- Handles low-confidence predictions to avoid incorrect responses.
Example:
- name: FallbackClassifier
threshold: 0.3
Policies: Controlling Dialogue Flow
While the pipeline processes user inputs, policies determine the bot's next action. They decide whether the bot should follow a rule, recall a predefined path, or generalize based on context.
Common Policies in Rasa
1.RulePolicy
- Handles predictable flows and FAQs.
Example:
- name: RulePolicy
core_fallback_threshold: 0.4
enable_fallback_prediction: True
2.MemoizationPolicy
- Remembers exact conversation paths from training stories.
3.TEDPolicy
- Generalizes to predict the next action when the conversation deviates from training stories.
Example:
- name: TEDPolicy
max_history: 5
epochs: 100
4.FallbackPolicy
- Triggers a fallback action when confidence is too low.
How It All Works: A Visual Representation
Below is a Mermaid.js diagram showing how the pipeline and policies interact to process user inputs and generate responses:
graph TD
A[User Input] -->|Raw Text| B[Tokenizer]
B -->|Tokens| C[Featurizers]
C -->|Features| D[Entity Extractors]
C -->|Features| E[Intent Classifier]
D -->|Entities| F[DIETClassifier]
E -->|Intent| F[DIETClassifier]
F -->|Predictions| G[Policy Decision]
G -->|Follows Rules| H[RulePolicy]
G -->|Known Paths| I[MemoizationPolicy]
G -->|Generalized| J[TEDPolicy]
G -->|Fallback| K[FallbackPolicy]
H --> L[Bot Action]
I --> L
J --> L
K --> L
L --> M[Bot Response]
%% Additional Notes
subgraph Rasa Pipeline
B
C
D
E
F
end
subgraph Rasa Policies
H
I
J
K
end
Example: Building a Pipeline for Thai
Here’s an example pipeline tailored for the Thai language, which has unique tokenization and feature extraction requirements:
language: th
pipeline:
- name: "custom_components.thai_tokenizer.ThaiTokenizer"
model: "newmm"
- name: RegexFeaturizer
- name: CountVectorsFeaturizer
analyzer: "char_wb"
min_ngram: 2
max_ngram: 4
- name: DucklingEntityExtractor
dimensions: ["time", "number", "amount-of-money"]
- name: DIETClassifier
epochs: 100
entity_recognition: True
- name: FallbackClassifier
threshold: 0.3
Tips for Optimization
1.Start Simple:
- Begin with essential components (e.g., tokenizer, featurizers, DIETClassifier).
- Add advanced features like
LanguageModelFeaturizeror custom components later.
2.Validate Data:
- Use
rasa data validateto catch inconsistencies in your training data.
3.Monitor Performance:
- Use
rasa testto evaluate the bot's performance and refine as needed.
Conclusion
Mastering Rasa’s pipeline and policies allows you to build a chatbot that processes user inputs efficiently and responds intelligently. By combining well-optimized pipelines with clear dialogue policies, you can create a bot that’s accurate, flexible, and tailored to your use case.
Whether you’re building for Thai or any other language, start simple, test iteratively, and refine your configurations to achieve the best results.
Let us know if you have any questions or need help with your pipeline! 😊
Feel free to share feedback or ask for more detailed examples.
Get in Touch with us
Related Posts
- 用 AI 改造 COI 管理:真实工厂案例解析(Hybrid Rasa + LangChain)
- How AI Transforms COI Management: A Real Factory Use Case (Hybrid Rasa + LangChain)
- SimpliAgentic —— 新一代自律智能工厂,从这里开始
- SimpliAgentic — The Future of Autonomous Factory Automation Has Arrived
- 为什么理解 Android Internals(安卓内部机制)如此重要?——帮助企业打造高价值系统级服务
- Why Android Internals Matter — And the High-Value Services Your Business Can Build With Them
- 为什么企业应该开发自己的电商系统(而不是依赖租用型平台)
- Why Your Business Should Build Its Own E-Commerce System (Instead of Renting One)
- Upstream、Downstream 和 Fork:Android 与 Linux 开发者必须理解的核心概念
- Upstream, Downstream, and Fork: A Clear Guide for Android & Linux Developers
- NVIDIA、Microsoft、OpenAI、Google、Oracle 以及 AMD:正在共同推动 AI 泡沫如何形成?
- The Real AI Bubble: How NVIDIA, Microsoft, OpenAI, Google, Oracle — and Now AMD — Shape the Future of Compute
- 深度学习在房地产开发中的应用
- Deep Learning in Property Development
- 代码修复与遗留系统维护服务 —— Simplico 助力企业保持系统稳定、安全、高效
- Code Fixing & Legacy System Maintenance — Keep Your Business Running Smoothly with Simplico
- Python 深度学习在工厂自动化中的应用:2025 全面指南
- Python Deep Learning in Factory Automation: A Complete Guide (2025)
- 工厂 / 制造业专用 Python 开发与培训服务
- Python Development & Industrial Automation Training Services













