Mastering Rasa Pipeline and Policies: A Guide to Building Smarter Chatbots
Rasa’s pipeline and policies are at the core of its ability to process user inputs, classify intents, extract entities, and determine the next best action. Whether you’re building a chatbot for customer support, a virtual assistant, or any conversational AI, understanding how these components work will help you design a smarter and more efficient bot.
In this blog post, we’ll break down the pipeline components, explain the role of policies, and include a visual Mermaid.js diagram to show how everything connects.
What is a Rasa Pipeline?
The Rasa pipeline is a sequence of components that processes user input and prepares it for intent classification and entity recognition. These components handle tokenization, feature extraction, and more, creating a structured representation of the text.
Think of the pipeline as a conveyor belt, where each component performs a specific task in the text processing workflow.
Key Components of the Pipeline
1.Tokenizer
- Breaks user input into smaller units (tokens) like words or characters.
- Critical for languages like Thai, which do not use spaces between words.
Example:
- name: "custom_components.thai_tokenizer.ThaiTokenizer"
model: "newmm"
2.Featurizers
- Convert tokens into numerical representations (vectors).
- Example components:
CountVectorsFeaturizer: For word or character n-grams.RegexFeaturizer: For pattern-based features like phone numbers or dates.
Example:
- name: CountVectorsFeaturizer
analyzer: "char_wb"
min_ngram: 2
max_ngram: 4
3.Entity Extractors
- Extract structured data like names, locations, or dates.
- Example components:
DucklingEntityExtractor: Automatically detects dates, times, and numbers.RegexEntityExtractor: Captures entities using regex patterns.
Example:
- name: DucklingEntityExtractor
dimensions: ["time", "number"]
4.Intent Classifier
- Identifies the intent of the user’s input and extracts entities simultaneously using the
DIETClassifier.
Example:
- name: DIETClassifier
epochs: 100
entity_recognition: True
5.Fallback Mechanism
- Handles low-confidence predictions to avoid incorrect responses.
Example:
- name: FallbackClassifier
threshold: 0.3
Policies: Controlling Dialogue Flow
While the pipeline processes user inputs, policies determine the bot's next action. They decide whether the bot should follow a rule, recall a predefined path, or generalize based on context.
Common Policies in Rasa
1.RulePolicy
- Handles predictable flows and FAQs.
Example:
- name: RulePolicy
core_fallback_threshold: 0.4
enable_fallback_prediction: True
2.MemoizationPolicy
- Remembers exact conversation paths from training stories.
3.TEDPolicy
- Generalizes to predict the next action when the conversation deviates from training stories.
Example:
- name: TEDPolicy
max_history: 5
epochs: 100
4.FallbackPolicy
- Triggers a fallback action when confidence is too low.
How It All Works: A Visual Representation
Below is a Mermaid.js diagram showing how the pipeline and policies interact to process user inputs and generate responses:
graph TD
A[User Input] -->|Raw Text| B[Tokenizer]
B -->|Tokens| C[Featurizers]
C -->|Features| D[Entity Extractors]
C -->|Features| E[Intent Classifier]
D -->|Entities| F[DIETClassifier]
E -->|Intent| F[DIETClassifier]
F -->|Predictions| G[Policy Decision]
G -->|Follows Rules| H[RulePolicy]
G -->|Known Paths| I[MemoizationPolicy]
G -->|Generalized| J[TEDPolicy]
G -->|Fallback| K[FallbackPolicy]
H --> L[Bot Action]
I --> L
J --> L
K --> L
L --> M[Bot Response]
%% Additional Notes
subgraph Rasa Pipeline
B
C
D
E
F
end
subgraph Rasa Policies
H
I
J
K
end
Example: Building a Pipeline for Thai
Here’s an example pipeline tailored for the Thai language, which has unique tokenization and feature extraction requirements:
language: th
pipeline:
- name: "custom_components.thai_tokenizer.ThaiTokenizer"
model: "newmm"
- name: RegexFeaturizer
- name: CountVectorsFeaturizer
analyzer: "char_wb"
min_ngram: 2
max_ngram: 4
- name: DucklingEntityExtractor
dimensions: ["time", "number", "amount-of-money"]
- name: DIETClassifier
epochs: 100
entity_recognition: True
- name: FallbackClassifier
threshold: 0.3
Tips for Optimization
1.Start Simple:
- Begin with essential components (e.g., tokenizer, featurizers, DIETClassifier).
- Add advanced features like
LanguageModelFeaturizeror custom components later.
2.Validate Data:
- Use
rasa data validateto catch inconsistencies in your training data.
3.Monitor Performance:
- Use
rasa testto evaluate the bot's performance and refine as needed.
Conclusion
Mastering Rasa’s pipeline and policies allows you to build a chatbot that processes user inputs efficiently and responds intelligently. By combining well-optimized pipelines with clear dialogue policies, you can create a bot that’s accurate, flexible, and tailored to your use case.
Whether you’re building for Thai or any other language, start simple, test iteratively, and refine your configurations to achieve the best results.
Let us know if you have any questions or need help with your pipeline! 😊
Feel free to share feedback or ask for more detailed examples.
Get in Touch with us
Related Posts
- Temporal × 本地大模型 × Robot Framework 面向中国企业的可靠业务自动化架构实践
- Building Reliable Office Automation with Temporal, Local LLMs, and Robot Framework
- RPA + AI: 为什么没有“智能”的自动化一定失败, 而没有“治理”的智能同样不可落地
- RPA + AI: Why Automation Fails Without Intelligence — and Intelligence Fails Without Control
- Simulating Border Conflict and Proxy War
- 先解决“检索与访问”问题 重塑高校图书馆战略价值的最快路径
- Fix Discovery & Access First: The Fastest Way to Restore the University Library’s Strategic Value
- 我们正在开发一个连接工厂与再生资源企业的废料交易平台
- We’re Building a Better Way for Factories and Recyclers to Trade Scrap
- 如何使用 Python 开发 MES(制造执行系统) —— 面向中国制造企业的实用指南
- How to Develop a Manufacturing Execution System (MES) with Python
- MES、ERP 与 SCADA 的区别与边界 —— 制造业系统角色与连接关系详解
- MES vs ERP vs SCADA: Roles and Boundaries Explained
- 为什么学习软件开发如此“痛苦” ——以及真正有效的解决方法
- Why Learning Software Development Feels So Painful — and How to Fix It
- 企业最终会选择哪种 AI:GPT 风格,还是 Gemini 风格?
- What Enterprises Will Choose: GPT-Style AI or Gemini-Style AI?
- GPT-5.2 在哪些真实业务场景中明显优于 GPT-5.1
- Top Real-World Use Cases Where GPT-5.2 Shines Over GPT-5.1
- ChatGPT 5.2 与 5.1 的区别 —— 用通俗类比来理解













