ทำความเข้าใจการทำงานของโมเดล AI: คู่มือสำหรับทุกคน
ปัญญาประดิษฐ์ (AI) ถูกใช้อย่างแพร่หลายในปัจจุบัน ตั้งแต่แชทบอทไปจนถึงผู้ช่วยอัตโนมัติ แต่ AI ทำงานอย่างไรเบื้องหลัง? บทความนี้จะอธิบาย AI ในแบบที่ทั้งผู้ที่มีพื้นฐานและไม่มีพื้นฐานด้านเทคนิคสามารถเข้าใจได้ โดยครอบคลุมถึงวิธีที่ AI ประมวลผลคำขอและสร้างผลลัพธ์
พารามิเตอร์ของโมเดล AI คืออะไร?
โมเดล AI ใช้ พารามิเตอร์ ซึ่งเป็นค่าต่าง ๆ ที่ช่วยให้ AI เข้าใจและสร้างผลลัพธ์ได้ พารามิเตอร์เหล่านี้รวมถึง:
- น้ำหนักและค่าไบแอส (สำหรับผู้ที่มีพื้นฐานด้านเทคนิค) – ค่าทางคณิตศาสตร์ที่กำหนดความแข็งแกร่งของการเชื่อมต่อระหว่างเซลล์ประสาทในโครงข่ายประสาทเทียม
- รูปแบบและกฎเกณฑ์ (สำหรับผู้ที่ไม่มีพื้นฐานด้านเทคนิค) – AI เรียนรู้ความสัมพันธ์ระหว่างคำและแนวคิด
- ค่าความสำคัญของข้อมูล (สำหรับทุกคน) – AI ตัดสินใจว่าคำหรือส่วนใดของข้อมูลที่สำคัญที่สุดในบริบท
- ตัวกรอง/เคอร์เนล (สำหรับผู้ที่มีพื้นฐานด้านเทคนิค) – ใช้ในการจดจำภาพและประมวลผลข้อความเพื่อดึงข้อมูลสำคัญออกมา
ในทางคณิตศาสตร์ โครงข่ายประสาทเทียมจะประมวลผลอินพุต X โดยใช้น้ำหนัก W และค่าไบแอส b ตามสมการ:
Y = W \cdot X + b
โดยที่ Y คือค่าผลลัพธ์
ขนาดของโมเดล AI: ใหญ่แค่ไหน?
โมเดล AI มีหลายขนาดขึ้นอยู่กับจำนวนพารามิเตอร์ที่ใช้ นี่คือตัวอย่างเปรียบเทียบ:
| ประเภทของโมเดล | ขนาด | การใช้งาน |
|---|---|---|
| โมเดล AI ขนาดเล็ก | < 1B พารามิเตอร์ | งานง่าย ๆ เช่น การตรวจสอบคำสะกด |
| โมเดล AI ขนาดกลาง | 7B พารามิเตอร์ | แชทบอทและผู้ช่วยเขียนโค้ด |
| โมเดล AI ขนาดใหญ่ | 175B+ พารามิเตอร์ | AI ขั้นสูง เช่น ChatGPT และ Google Bard |
โมเดลที่ใหญ่กว่ามักให้ผลลัพธ์ที่แม่นยำกว่า แต่ต้องการพลังการประมวลผลและข้อมูลมากขึ้น
AI เข้าใจและประมวลผลคำขออย่างไร?
สมมติว่าคุณถาม AI ว่า: "เขียนโปรแกรม Factorial ด้วย Python"
นี่คือสิ่งที่เกิดขึ้นภายในโมเดล AI:
ขั้นตอนการทำงานของ AI
- การแบ่งส่วนข้อความ (สำหรับผู้ที่มีพื้นฐานด้านเทคนิค): AI จะแบ่งข้อความออกเป็นหน่วยเล็ก ๆ (Token)
- การแยกความหมายของข้อความ (สำหรับผู้ที่ไม่มีพื้นฐานด้านเทคนิค): AI แยกคำเพื่อให้เข้าใจง่ายขึ้น
- การแปลงเป็นรหัสตัวเลข (สำหรับผู้ที่มีพื้นฐานด้านเทคนิค): ทุก Token ถูกแปลงเป็นหมายเลขที่ AI เข้าใจ
- การทำความเข้าใจความหมาย (สำหรับทุกคน): AI ใช้ข้อมูลที่เคยเรียนรู้มาเพื่อวิเคราะห์คำขอ
- การค้นหารูปแบบ (สำหรับทุกคน): AI ตรวจสอบตัวอย่างนับพันล้านที่เคยเห็นมาก่อน
- การสร้างคำตอบ (สำหรับผู้ที่มีพื้นฐานด้านเทคนิค): AI คาดการณ์คำถัดไปทีละคำ
- การสร้างผลลัพธ์ (สำหรับผู้ที่ไม่มีพื้นฐานด้านเทคนิค): AI สร้างข้อความที่อ่านเข้าใจได้
ในทางคณิตศาสตร์ AI คาดการณ์คำถัดไป y_t โดยพิจารณาคำก่อนหน้า:
P(y_t | y_1, y_2, ..., y_{t-1}) = \text{softmax}(W h_t + b)
โดยที่ h_t คือสถานะที่ซ่อนอยู่ในเวลาที่ t
แผนภาพการทำงานของ AI (Mermaid.js)
แผนภาพนี้แสดงขั้นตอนการทำงานของ AI ในทั้งเชิงเทคนิคและทั่วไป:
graph TD;
A["ป้อนคำขอ: เขียนโปรแกรม Factorial ด้วย Python"] --> B["การแบ่งส่วนข้อความ"]
B --> C["การแปลงเป็นรหัสตัวเลข"]
C --> D["การทำความเข้าใจความหมายและค้นหารูปแบบ"]
D --> E["การสร้างคำตอบทีละคำ"]
E --> F["สร้างผลลัพธ์สุดท้าย"]
ตัวอย่างผลลัพธ์: โปรแกรม Factorial ใน Python
ถ้าคุณขอให้ AI สร้างโปรแกรม Factorial มันอาจตอบดังนี้:
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5))
ซึ่งเป็นไปตามสมการทางคณิตศาสตร์ของ Factorial:
n! = n \times (n-1)! \text{ เมื่อ } n > 0, \quad 0! = 1
สรุป
โมเดล AI ทำงานโดยการจดจำรูปแบบ ประมวลผลข้อมูลทีละขั้นตอน และสร้างผลลัพธ์ที่เหมาะสม ไม่ว่าคุณจะเป็นมือใหม่หรือผู้เชี่ยวชาญ การเข้าใจพื้นฐานเหล่านี้สามารถช่วยให้คุณเห็นคุณค่าของ AI ในโลกปัจจุบัน
คุณอยากเรียนรู้เพิ่มเติมเกี่ยวกับ AI ไหม? แสดงความคิดเห็นได้เลย! 🚀
Get in Touch with us
Related Posts
- Fine-Tuning vs Prompt Engineering แบบเข้าใจง่ายสำหรับผู้นำองค์กรไทย
- บทนำสู่ระบบชลประทานแบบแม่นยำ (Precision Irrigation)
- IoT Sensors ไม่ได้สำคัญที่สุด — “การเชื่อมข้อมูล” ต่างหากคือหัวใจของ Smart Farming
- พัฒนา Mobile Application ด้วย React / React Native
- AI Vertical Integration: เปลี่ยนธุรกิจไทยให้ฉลาดขึ้น เร็วขึ้น และขับเคลื่อนด้วยข้อมูล
- คู่มือองค์กรไทย: วิธีนำ AI มาใช้แบบเป็นขั้นตอน — ฉบับปี 2025
- ทำไม EV Fleet Management SaaS ที่มี AI Optimization คือ “หัวใจสำคัญ” ของธุรกิจยานยนต์ไฟฟ้าในไทย
- 7 Use Cases ของระบบ Machine Learning ที่กำลังเปลี่ยนอนาคตโรงงานและธุรกิจไทย
- การใช้ LSTM ในการพยากรณ์ระดับน้ำท่วม: ทางออกใหม่ของเมืองไทยเพื่อรับมือฝนตกหนักและน้ำรอระบาย
- ข้อเสนอระบบ SimpliMES Lite — โซลูชัน MES แบบเบาสำหรับโรงงานไทย
- ทำไมร้านค้าออนไลน์ที่ประสบความสำเร็จถึงเลือกใช้ SimpliShop: สร้าง เติบโต และชนะตลาดของคุณ
- Vertical Integration of AI: อนาคตใหม่ของธุรกิจยุคดิจิทัล
- ระบบ AI Prediction — เปลี่ยนการตัดสินใจของคุณให้ทรงพลังยิ่งกว่าเดิม
- ถ้า AI Bubble แตก จะเกิดอะไรขึ้น? (วิเคราะห์จริง ไม่อิงกระแส)
- ใช้ Deep Learning + วิเคราะห์ข่าว (News Sentiment) ทำนายราคาหุ้น – คู่มือฉบับสมบูรณ์
- เปลี่ยนงาน COI ให้ง่ายขึ้นด้วย AI: ตัวอย่างใช้งานจริงในโรงงาน (Hybrid Rasa + LangChain)
- SimpliAgentic — อนาคตของโรงงานอัตโนมัติอัจฉริยะมาถึงแล้ว
- ทำไม “Android Internals” จึงสำคัญ — และบริการระดับสูงที่ธุรกิจของคุณสามารถสร้างได้จากความรู้นี้
- ทำไมธุรกิจควรพัฒนาระบบอีคอมเมิร์ซของตัวเอง (แทนการเช่าแพลตฟอร์มสำเร็จรูป)
- Upstream, Downstream และ Fork คืออะไร? คู่มือเข้าใจง่ายสำหรับนักพัฒนา Android & Linux













