Understanding How AI Models Work: A Guide for All Readers
Artificial Intelligence (AI) is widely used today, from chatbots to automated assistants. But how does AI work behind the scenes? This post will explain AI in a way that both technical and non-technical readers can understand, covering how AI processes requests and generates responses.
What Are AI Model Parameters?
AI models rely on parameters, which are like settings that help the AI understand and generate responses. These include:
- Weights and Biases (Technical) – Mathematical values that determine the strength of connections between neurons in a neural network.
- Patterns & Rules (Non-Technical) – The AI learns relationships between words and concepts.
- Attention Weights (Both) – The AI decides which words or parts of input matter most in context.
- Filters/Kernels (Technical) – Used in image recognition and text processing to extract key details.
Mathematically, a neural network processes an input X using weights W and biases b:
Y = W \cdot X + b
where Y is the output.
AI Model Sizes: How Big Are They?
AI models come in different sizes based on the number of parameters they use. Here’s a simple comparison:
Model Type | Size | Used For |
---|---|---|
Small AI Models | < 1B parameters | Simple tasks like spell checkers |
Medium AI Models | 7B parameters | Chatbots and coding assistants |
Large AI Models | 175B+ parameters | Advanced AI like ChatGPT and Google’s Bard |
Larger models typically perform better but require more computing power and data.
How AI Understands and Processes a Request
Let’s say you ask an AI: "Write a Python factorial program"
Here’s what happens inside the AI model:
Step-by-Step AI Workflow
- Tokenization (Technical): The input text is broken down into smaller pieces (tokens).
- Breaking Down the Request (Non-Technical): AI separates words for easier understanding.
- Mapping to Numerical IDs (Technical): Each token is converted into a number from the AI’s vocabulary.
- Understanding Meaning (Both): AI uses past examples to interpret the request.
- Finding Patterns (Both): The AI looks at billions of examples it has seen before.
- Generating a Response (Technical): AI predicts the next token (word) step by step.
- Final Output (Non-Technical): The AI produces a human-readable response.
Mathematically, the AI predicts the next word y_t given previous words using a probability function:
P(y_t | y_1, y_2, ..., y_{t-1}) = \text{softmax}(W h_t + b)
where h_t is the hidden state at time t.
Mermaid.js Workflow Diagram
This diagram illustrates the AI workflow in both simple and technical terms:
graph TD;
A["User Input: write a python factorial program"] --> B["Tokenization & Breaking Down Words"]
B --> C["Mapping to Numerical IDs"]
C --> D["Understanding Meaning & Finding Patterns"]
D --> E["Generating Response Step-by-Step"]
E --> F["Final Output"]
Example Response: Python Factorial Program
If you ask AI to generate a factorial program, it might reply with:
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5))
This follows the mathematical formula for factorial:
n! = n \times (n-1)! \text{ for } n > 0, \quad 0! = 1
Conclusion
AI models work by recognizing patterns, processing input step by step, and generating responses. Whether you're a beginner or an expert, understanding these fundamentals can help you appreciate how AI is shaping our world.
Would you like to explore more AI concepts? Let us know in the comments! 🚀
Related Posts
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน
- How SMEs Can Use Open-Source AI Models to Grow Their Business
- AIモデルの仕組みを理解する: すべての読者向けガイド
- ทำความเข้าใจการทำงานของโมเดล AI: คู่มือสำหรับทุกคน
- 次世代のAI開発 オープンソースモデルを活用したカスタムAIアプリケーションの構築
- สร้างแอปพลิเคชัน AI ที่ปรับแต่งได้ตามต้องการด้วยโมเดลโอเพ่นซอร์ส
- Next-Gen AI Development: Build Custom AI Applications with Open-Source Models
- AI時代で価値がないと感じる?それはあなただけではありません
- รู้สึกไม่มีคุณค่าในยุค AI? คุณไม่ได้รู้สึกแบบนี้คนเดียว
Articles
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน
- How SMEs Can Use Open-Source AI Models to Grow Their Business
- 的中文翻译为: "如何使用 Python 和 PLC 数据自动化工业流程
- PythonとPLCデータを活用した産業プロセスの自動化
- วิธีการทำให้กระบวนการอุตสาหกรรมเป็นอัตโนมัติด้วย Python และข้อมูลจาก PLC
- How to Automate Industrial Processes with Python and PLC Data
- วิธีเชื่อมต่อและดึงข้อมูล PLC จากฐานข้อมูลด้วย Python
- PythonでPLCデータをデータベースから取得・統合する方法
- How to Connect and Integrate PLC Data from a Database with Python
- AIモデルの仕組みを理解する: すべての読者向けガイド
- ทำความเข้าใจการทำงานของโมเดล AI: คู่มือสำหรับทุกคน
- 次世代のAI開発 オープンソースモデルを活用したカスタムAIアプリケーションの構築
- สร้างแอปพลิเคชัน AI ที่ปรับแต่งได้ตามต้องการด้วยโมเดลโอเพ่นซอร์ส
- Next-Gen AI Development: Build Custom AI Applications with Open-Source Models
- AI時代で価値がないと感じる?それはあなただけではありません
- รู้สึกไม่มีคุณค่าในยุค AI? คุณไม่ได้รู้สึกแบบนี้คนเดียว
- Feeling Valueless as a Developer in the Age of AI? You’re Not Alone.
- Generative AI と Multimodal Models の比較: 主な違いと応用
Our Products
Related Posts
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน
- How SMEs Can Use Open-Source AI Models to Grow Their Business
- AIモデルの仕組みを理解する: すべての読者向けガイド
- ทำความเข้าใจการทำงานของโมเดล AI: คู่มือสำหรับทุกคน
- 次世代のAI開発 オープンソースモデルを活用したカスタムAIアプリケーションの構築
- สร้างแอปพลิเคชัน AI ที่ปรับแต่งได้ตามต้องการด้วยโมเดลโอเพ่นซอร์ส
- Next-Gen AI Development: Build Custom AI Applications with Open-Source Models
- AI時代で価値がないと感じる?それはあなただけではありません
- รู้สึกไม่มีคุณค่าในยุค AI? คุณไม่ได้รู้สึกแบบนี้คนเดียว
Articles
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน
- How SMEs Can Use Open-Source AI Models to Grow Their Business
- 的中文翻译为: "如何使用 Python 和 PLC 数据自动化工业流程
- PythonとPLCデータを活用した産業プロセスの自動化
- วิธีการทำให้กระบวนการอุตสาหกรรมเป็นอัตโนมัติด้วย Python และข้อมูลจาก PLC
- How to Automate Industrial Processes with Python and PLC Data
- วิธีเชื่อมต่อและดึงข้อมูล PLC จากฐานข้อมูลด้วย Python
- PythonでPLCデータをデータベースから取得・統合する方法
- How to Connect and Integrate PLC Data from a Database with Python
- AIモデルの仕組みを理解する: すべての読者向けガイド
- ทำความเข้าใจการทำงานของโมเดล AI: คู่มือสำหรับทุกคน
- 次世代のAI開発 オープンソースモデルを活用したカスタムAIアプリケーションの構築
- สร้างแอปพลิเคชัน AI ที่ปรับแต่งได้ตามต้องการด้วยโมเดลโอเพ่นซอร์ส
- Next-Gen AI Development: Build Custom AI Applications with Open-Source Models
- AI時代で価値がないと感じる?それはあなただけではありません
- รู้สึกไม่มีคุณค่าในยุค AI? คุณไม่ได้รู้สึกแบบนี้คนเดียว
- Feeling Valueless as a Developer in the Age of AI? You’re Not Alone.
- Generative AI と Multimodal Models の比較: 主な違いと応用