PythonでPLCデータをデータベースから取得・統合する方法
PLC(プログラマブル・ロジック・コントローラ)のデータをデータベースに保存し、Pythonを使ってデータを取得・分析・可視化したい場合、このガイドが役立ちます。
MySQL, PostgreSQL, SQLite, MongoDB などのデータベースとPythonを接続し、PLCデータを処理する方法を解説します。
ステップ 1: Pythonのデータベース接続ライブラリをインストール
まず、使用するデータベースに応じたPythonライブラリをインストールします。
pip install pymysql psycopg2 sqlite3 pymongo sqlalchemy pandas
- MySQL:
pymysql
- PostgreSQL:
psycopg2
- SQLite:
sqlite3
(Pythonに標準搭載) - MongoDB:
pymongo
- ORM(複数のデータベースを統合管理):
sqlalchemy
ステップ 2: PythonからPLCデータベースに接続する
PythonでMySQLデータベースに接続
PLCデータがMySQL に保存されている場合、pymysql
を使用します。
import pymysql
# MySQLに接続
conn = pymysql.connect(
host='localhost',
user='root',
password='yourpassword',
database='plc_data'
)
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
# PLCデータを表示
for row in data:
print(row)
conn.close()
PythonでPostgreSQLデータベースに接続
PostgreSQL を使用している場合は、psycopg2
を使用します。
import psycopg2
# PostgreSQLに接続
conn = psycopg2.connect(
host="localhost",
database="plc_data",
user="postgres",
password="yourpassword"
)
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
for row in data:
print(row)
conn.close()
PythonでSQLiteデータベースに接続
SQLite にデータが保存されている場合は、sqlite3
を使用します。
import sqlite3
# SQLiteに接続
conn = sqlite3.connect("plc_data.db")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
for row in data:
print(row)
conn.close()
PythonでMongoDBデータベースに接続
MongoDB にデータが保存されている場合は、pymongo
を使用します。
from pymongo import MongoClient
# MongoDBに接続
client = MongoClient("mongodb://localhost:27017/")
db = client["plc_data"]
collection = db["sensor_readings"]
for record in collection.find():
print(record)
ステップ 3: PythonでPLCデータを処理
Pandasを使ってデータを整形
データをPandas DataFrame に変換すると、処理が簡単になります。
import pandas as pd
df = pd.DataFrame(data, columns=["timestamp", "temperature", "pressure", "status"])
print(df.head())
ステップ 4: PLCデータをPythonで可視化
Matplotlibでグラフを作成
matplotlib
を使って、PLCのセンサーデータをグラフ化 できます。
import matplotlib.pyplot as plt
df['timestamp'] = pd.to_datetime(df['timestamp'])
plt.plot(df['timestamp'], df['temperature'], label="Temperature")
plt.plot(df['timestamp'], df['pressure'], label="Pressure")
plt.xlabel("時間")
plt.ylabel("センサーの値")
plt.title("PLCセンサーデータの可視化")
plt.legend()
plt.show()
ステップ 5: PLCデータをリアルタイムで取得
PLCデータを定期的に取得 するには、schedule
を使用します。
import schedule
import time
def fetch_plc_data():
conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
data = cursor.fetchall()
print("最新のPLCデータ:", data)
conn.close()
# 10秒ごとにデータを取得
schedule.every(10).seconds.do(fetch_plc_data)
while True:
schedule.run_pending()
time.sleep(1)
ステップ 6: PLCデータをウェブダッシュボードに表示
PLCデータをウェブアプリケーションで表示 するには、Flask
を使用します。
from flask import Flask, render_template
import pymysql
app = Flask(__name__)
def get_plc_data():
conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
data = cursor.fetchall()
conn.close()
return data
@app.route("/")
def index():
data = get_plc_data()
return render_template("index.html", data=data)
if __name__ == "__main__":
app.run(debug=True)
ステップ 7: 異常データのアラートを設定
温度や圧力が異常値を超えた場合に警告 を出すスクリプトです。
for row in data:
timestamp, temperature, pressure, status = row
if temperature > 80:
print(f"⚠️ アラート: 高温検出 {timestamp}: {temperature}°C")
if pressure > 100:
print(f"⚠️ アラート: 高圧検出 {timestamp}: {pressure} Pa")
まとめ
このガイドでは、Pythonを使ってPLCデータをデータベースから取得し、分析・可視化・アラート設定・ウェブ表示を行う方法 を説明しました。
この方法を使えば、工場の自動化システム、産業IoT、リアルタイムモニタリング にPythonを活用できます!🚀
Related Posts
- JavaScriptでフルスタックのEコマースシステムを開発しよう
- Python・Langchain・OllamaでエージェンティックAIを構築する方法(eコマース & 工場自動化向け)
- PythonとOBD-IIライブデータでP0420の根本原因を診断する
- スタートアップのアイデアを正しく検証するための『The Mom Test』の活用法
- RasaとLangchain、どちらを選ぶべきか?チャットボット開発の選択基準
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- LangChain + Ollama で RAGチャットボットを作る方法
- SCPI を使った EXFO 機器の自動化:実践ガイド
- レガシーコードを扱いやすくするためのデザインパターン
- 🧠 レガシーコードに安全に新機能を追加する方法
- レガシーソフトウェアを安全に近代化 — 全面リライト不要!
- OpenSearchの仕組みとは?リアルタイム検索エンジンの内部構造を解説
- DjangoでBasicとPremium機能を分けるベストな戦略とは?
- オーダーメイド家具ビジネスをデジタル化しよう — あなたのブランド専用ECプラットフォーム
- simpliPOSのご紹介:ERPNextを基盤にしたスマートPOSシステム
- スマート農業をもっと簡単に:農業資材を効率的に管理・計画するアプリ
- MEEPで電磁波をシミュレーション:はじめてのFDTD入門
Our Products
Related Posts
- JavaScriptでフルスタックのEコマースシステムを開発しよう
- Python・Langchain・OllamaでエージェンティックAIを構築する方法(eコマース & 工場自動化向け)
- PythonとOBD-IIライブデータでP0420の根本原因を診断する
- スタートアップのアイデアを正しく検証するための『The Mom Test』の活用法
- RasaとLangchain、どちらを選ぶべきか?チャットボット開発の選択基準
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- LangChain + Ollama で RAGチャットボットを作る方法
- SCPI を使った EXFO 機器の自動化:実践ガイド
- レガシーコードを扱いやすくするためのデザインパターン
- 🧠 レガシーコードに安全に新機能を追加する方法
- レガシーソフトウェアを安全に近代化 — 全面リライト不要!
- OpenSearchの仕組みとは?リアルタイム検索エンジンの内部構造を解説
- DjangoでBasicとPremium機能を分けるベストな戦略とは?
- オーダーメイド家具ビジネスをデジタル化しよう — あなたのブランド専用ECプラットフォーム
- simpliPOSのご紹介:ERPNextを基盤にしたスマートPOSシステム
- スマート農業をもっと簡単に:農業資材を効率的に管理・計画するアプリ
- MEEPで電磁波をシミュレーション:はじめてのFDTD入門