Understanding YOLO: How It Works & Sample Code
Introduction to YOLO
YOLO (You Only Look Once) is a cutting-edge object detection algorithm known for its speed and accuracy. Unlike traditional models that use region proposal methods (such as Faster R-CNN), YOLO treats object detection as a single regression problem, predicting bounding boxes and class probabilities in one forward pass.
This blog will explain how YOLO works and provide sample code to help you get started with YOLOv8.
How YOLO Works
1. Grid-Based Prediction
YOLO divides an image into an S x S grid. Each grid cell predicts:
- Bounding boxes (x, y, width, height)
- Confidence scores
- Class probabilities
Each cell is responsible for detecting objects whose center falls within it.
2. Single Neural Network Pass
- Unlike region proposal networks (like R-CNN), YOLO processes the entire image in a single forward pass.
- This makes it significantly faster while maintaining good accuracy.
3. Bounding Box Filtering
YOLO applies Non-Maximum Suppression (NMS) to remove overlapping bounding boxes, keeping only the most confident predictions.
Installing YOLOv8
To use YOLO, install the Ultralytics YOLO library:
pip install ultralytics
Sample Code: Running YOLO on an Image
1. Import Dependencies
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
2. Load YOLO Model
# Load the pre-trained YOLOv8 model
model = YOLO("yolov8n.pt") # 'n' (nano) is the smallest version; other versions: 's', 'm', 'l', 'x'
3. Run YOLO on an Image
# Run YOLO on an image
image_path = "test.jpg" # Replace with your image path
results = model(image_path)
# Show results
results.show() # Display detected objects
4. Display Results with Matplotlib
# Convert results to OpenCV format and display
for result in results:
img = result.plot() # Draw bounding boxes
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()
5. Access Detected Objects
# Print detected objects
for result in results:
for box in result.boxes:
print(f"Class: {model.names[int(box.cls)]}, Confidence: {box.conf.item()}, BBox: {box.xyxy.tolist()}")
Running YOLO on a Video (Webcam or File)
# Open video (0 for webcam, or provide a video file path)
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Run YOLO on the frame
results = model(frame)
# Plot results on the frame
frame = results[0].plot()
# Show frame
cv2.imshow("YOLOv8 Detection", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
Applications of YOLO
- Surveillance & Security (weapon detection, facial recognition)
- Autonomous Vehicles (object detection in real-time)
- Retail & Inventory (smart checkout, stock monitoring)
- Medical Imaging (tumor detection, diagnostics)
- Drones & Robotics (tracking and following objects)
- Wildlife Conservation (monitoring endangered species and preventing poaching)
- Agriculture (detecting crop diseases, counting livestock, and monitoring plant health)
- Manufacturing & Quality Control (detecting defects in production lines)
- Sports Analytics (tracking player movements and ball trajectories in real-time)
Conclusion
YOLO is a powerful, real-time object detection model that balances speed and accuracy. Its ability to detect multiple objects in a single forward pass makes it ideal for a variety of applications, from security to automation.
Want to train YOLO on custom objects? Stay tuned for our next guide! 🚀
Related Posts
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- Training YOLO with a Custom Dataset: A Step-by-Step Guide
- WazuhとAIの統合による高度な脅威検出
Articles
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- แนะนำ OCR Document Manager: แปลงเอกสารเป็นข้อความได้ง่ายๆ บนเว็บ
- Introducing OCR Document Manager: Extract Text from Documents with Ease
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
Our Products
Related Posts
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- Training YOLO with a Custom Dataset: A Step-by-Step Guide
- WazuhとAIの統合による高度な脅威検出
Articles
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- แนะนำ OCR Document Manager: แปลงเอกสารเป็นข้อความได้ง่ายๆ บนเว็บ
- Introducing OCR Document Manager: Extract Text from Documents with Ease
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น