Understanding YOLO: How It Works & Sample Code
Introduction to YOLO
YOLO (You Only Look Once) is a cutting-edge object detection algorithm known for its speed and accuracy. Unlike traditional models that use region proposal methods (such as Faster R-CNN), YOLO treats object detection as a single regression problem, predicting bounding boxes and class probabilities in one forward pass.
This blog will explain how YOLO works and provide sample code to help you get started with YOLOv8.
How YOLO Works
1. Grid-Based Prediction
YOLO divides an image into an S x S grid. Each grid cell predicts:
- Bounding boxes (x, y, width, height)
- Confidence scores
- Class probabilities
Each cell is responsible for detecting objects whose center falls within it.
2. Single Neural Network Pass
- Unlike region proposal networks (like R-CNN), YOLO processes the entire image in a single forward pass.
- This makes it significantly faster while maintaining good accuracy.
3. Bounding Box Filtering
YOLO applies Non-Maximum Suppression (NMS) to remove overlapping bounding boxes, keeping only the most confident predictions.
Installing YOLOv8
To use YOLO, install the Ultralytics YOLO library:
pip install ultralytics
Sample Code: Running YOLO on an Image
1. Import Dependencies
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
2. Load YOLO Model
# Load the pre-trained YOLOv8 model
model = YOLO("yolov8n.pt") # 'n' (nano) is the smallest version; other versions: 's', 'm', 'l', 'x'
3. Run YOLO on an Image
# Run YOLO on an image
image_path = "test.jpg" # Replace with your image path
results = model(image_path)
# Show results
results.show() # Display detected objects
4. Display Results with Matplotlib
# Convert results to OpenCV format and display
for result in results:
img = result.plot() # Draw bounding boxes
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.axis("off")
plt.show()
5. Access Detected Objects
# Print detected objects
for result in results:
for box in result.boxes:
print(f"Class: {model.names[int(box.cls)]}, Confidence: {box.conf.item()}, BBox: {box.xyxy.tolist()}")
Running YOLO on a Video (Webcam or File)
# Open video (0 for webcam, or provide a video file path)
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Run YOLO on the frame
results = model(frame)
# Plot results on the frame
frame = results[0].plot()
# Show frame
cv2.imshow("YOLOv8 Detection", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
Applications of YOLO
- Surveillance & Security (weapon detection, facial recognition)
- Autonomous Vehicles (object detection in real-time)
- Retail & Inventory (smart checkout, stock monitoring)
- Medical Imaging (tumor detection, diagnostics)
- Drones & Robotics (tracking and following objects)
- Wildlife Conservation (monitoring endangered species and preventing poaching)
- Agriculture (detecting crop diseases, counting livestock, and monitoring plant health)
- Manufacturing & Quality Control (detecting defects in production lines)
- Sports Analytics (tracking player movements and ball trajectories in real-time)
Conclusion
YOLO is a powerful, real-time object detection model that balances speed and accuracy. Its ability to detect multiple objects in a single forward pass makes it ideal for a variety of applications, from security to automation.
Want to train YOLO on custom objects? Stay tuned for our next guide! 🚀
Get in Touch with us
Related Posts
- 基于启发式与新闻情绪的短期价格方向评估(Python)
- Estimating Short-Term Price Direction with Heuristics and News Sentiment (Python)
- Rust vs Python:AI 与大型系统时代的编程语言选择
- Rust vs Python: Choosing the Right Tool in the AI & Systems Era
- How Software Technology Can Help Chanthaburi Farmers Regain Control of Fruit Prices
- AI 如何帮助发现金融机会
- How AI Helps Predict Financial Opportunities
- 在 React Native 与移动应用中使用 ONNX 模型的方法
- How to Use an ONNX Model in React Native (and Other Mobile App Frameworks)
- 叶片病害检测算法如何工作:从相机到决策
- How Leaf Disease Detection Algorithms Work: From Camera to Decision
- Smart Farming Lite:不依赖传感器的实用型数字农业
- Smart Farming Lite: Practical Digital Agriculture Without Sensors
- 为什么定制化MES更适合中国工厂
- Why Custom-Made MES Wins Where Ready-Made Systems Fail
- How to Build a Thailand-Specific Election Simulation
- When AI Replaces Search: How Content Creators Survive (and Win)
- 面向中国市场的再生资源金属价格预测(不投机、重决策)
- How to Predict Metal Prices for Recycling Businesses (Without Becoming a Trader)
- Smart Durian Farming with Minimum Cost (Thailand)













