Training YOLO with a Custom Dataset: A Step-by-Step Guide
Object detection has become an essential technology in various industries, including security, automation, and robotics. YOLO (You Only Look Once) is one of the most popular real-time object detection models due to its speed and accuracy. In this blog post, we will walk you through training YOLO with your custom dataset, making it ready for real-world applications.
Step 1: Install Dependencies
To begin, install the necessary dependencies. The latest versions of YOLOv5 or YOLOv8 make training simpler and more efficient.
# Clone the YOLOv5 repository
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# Install required packages
pip install -r requirements.txt
For YOLOv8, you can install the Ultralytics package directly:
pip install ultralytics
Step 2: Prepare Your Dataset
YOLO requires data in a specific format, where each image has an associated annotation file in the YOLO format:
<class_id> <x_center> <y_center> <width> <height>
All values are normalized between 0 and 1. Below is the correct dataset folder structure:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
Creating the data.yaml
File
This file defines the dataset structure and class names:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # Number of object classes
names: ['person', 'car'] # Object class names
Step 3: Train the Model
To train YOLOv5, run the following command:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
For YOLOv8, use:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
Step 4: Monitor Training Progress
YOLO logs various performance metrics during training. If using YOLOv5, results will be stored in runs/train/exp/
. You can visualize training performance using TensorBoard:
tensorboard --logdir=runs/train
Step 5: Evaluate and Test the Model
Once training is complete, test the model on new images:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
For YOLOv8:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
Step 6: Export for Deployment
YOLO models can be exported to multiple formats for deployment:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
For YOLOv8:
yolo export model=runs/train/exp/weights/best.pt format=onnx
Final Thoughts
Training YOLO with a custom dataset enables real-world object detection for applications such as security, traffic monitoring, and automation. By following this step-by-step guide, you can prepare, train, and deploy your YOLO model effectively.
Would you like help automating the dataset preparation or optimizing training settings? Let us know in the comments!
Related Posts
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
- How AI Helps in Detecting Counterfeit Luxury Products
- YOLOの理解: 仕組みとサンプルコード
- การทำความเข้าใจ YOLO: วิธีการทำงานและตัวอย่างโค้ด
Articles
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
- How AI Helps in Detecting Counterfeit Luxury Products
- The Cold Start Problem の概念を活用して eCommerce ビジネスを成長させる方法
- 🚀วิธีนำแนวคิดจาก The Cold Start Problem มาใช้เพื่อขยายธุรกิจ eCommerce ของคุณ
- 🚀 How to Apply The Cold Start Problem Concepts to Grow Your eCommerce Business
- YOLOの理解: 仕組みとサンプルコード
- การทำความเข้าใจ YOLO: วิธีการทำงานและตัวอย่างโค้ด
- Understanding YOLO: How It Works & Sample Code
- PythonでAIを活用した広告最適化システムを構築する方法
- วิธีสร้างระบบเพิ่มประสิทธิภาพโฆษณาด้วย AI ใน Python
- How to Build an AI-Powered Ad Optimization System in Python
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน
Our Products
Related Posts
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
- How AI Helps in Detecting Counterfeit Luxury Products
- YOLOの理解: 仕組みとサンプルコード
- การทำความเข้าใจ YOLO: วิธีการทำงานและตัวอย่างโค้ด
Articles
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
- How AI Helps in Detecting Counterfeit Luxury Products
- The Cold Start Problem の概念を活用して eCommerce ビジネスを成長させる方法
- 🚀วิธีนำแนวคิดจาก The Cold Start Problem มาใช้เพื่อขยายธุรกิจ eCommerce ของคุณ
- 🚀 How to Apply The Cold Start Problem Concepts to Grow Your eCommerce Business
- YOLOの理解: 仕組みとサンプルコード
- การทำความเข้าใจ YOLO: วิธีการทำงานและตัวอย่างโค้ด
- Understanding YOLO: How It Works & Sample Code
- PythonでAIを活用した広告最適化システムを構築する方法
- วิธีสร้างระบบเพิ่มประสิทธิภาพโฆษณาด้วย AI ใน Python
- How to Build an AI-Powered Ad Optimization System in Python
- SMEがオープンソースAIモデルを活用してビジネスを拡大する方法
- วิธีที่ SMEs สามารถใช้โมเดล AI โอเพ่นซอร์สเพื่อขยายธุรกิจของตน