Training YOLO with a Custom Dataset: A Step-by-Step Guide
Object detection has become an essential technology in various industries, including security, automation, and robotics. YOLO (You Only Look Once) is one of the most popular real-time object detection models due to its speed and accuracy. In this blog post, we will walk you through training YOLO with your custom dataset, making it ready for real-world applications.
Step 1: Install Dependencies
To begin, install the necessary dependencies. The latest versions of YOLOv5 or YOLOv8 make training simpler and more efficient.
# Clone the YOLOv5 repository
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# Install required packages
pip install -r requirements.txt
For YOLOv8, you can install the Ultralytics package directly:
pip install ultralytics
Step 2: Prepare Your Dataset
YOLO requires data in a specific format, where each image has an associated annotation file in the YOLO format:
<class_id> <x_center> <y_center> <width> <height>
All values are normalized between 0 and 1. Below is the correct dataset folder structure:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
Creating the data.yaml
File
This file defines the dataset structure and class names:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # Number of object classes
names: ['person', 'car'] # Object class names
Step 3: Train the Model
To train YOLOv5, run the following command:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
For YOLOv8, use:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
Step 4: Monitor Training Progress
YOLO logs various performance metrics during training. If using YOLOv5, results will be stored in runs/train/exp/
. You can visualize training performance using TensorBoard:
tensorboard --logdir=runs/train
Step 5: Evaluate and Test the Model
Once training is complete, test the model on new images:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
For YOLOv8:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
Step 6: Export for Deployment
YOLO models can be exported to multiple formats for deployment:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
For YOLOv8:
yolo export model=runs/train/exp/weights/best.pt format=onnx
Final Thoughts
Training YOLO with a custom dataset enables real-world object detection for applications such as security, traffic monitoring, and automation. By following this step-by-step guide, you can prepare, train, and deploy your YOLO model effectively.
Would you like help automating the dataset preparation or optimizing training settings? Let us know in the comments!
Related Posts
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
Articles
- simpliPOSのご紹介:ERPNextを基盤にしたスマートPOSシステム
- แนะนำ simpliPOS: ระบบ POS อัจฉริยะบน ERPNext
- Introducing simpliPOS: The Smart POS Built on ERPNext
- スマート農業をもっと簡単に:農業資材を効率的に管理・計画するアプリ
- 🧑🌾 การทำฟาร์มอย่างชาญฉลาด: เครื่องมือช่วยวางแผนและติดตามการใช้ปัจจัยการผลิตในฟาร์มอย่างง่ายดาย
- 🌾 Smart Farming Made Simple: A Tool to Help Farmers Track and Plan Inputs Efficiently
- MEEPで電磁波をシミュレーション:はじめてのFDTD入門
- จำลองคลื่นแม่เหล็กไฟฟ้าด้วย MEEP: บทนำสู่การจำลองทางฟิสิกส์
- Simulate Electromagnetic Waves with MEEP: A Hands-On Introduction
- 🧠 LangChain はどのように動作するのか?
- LangChain ทำงานอย่างไร? เจาะลึกเบื้องหลังสมองของ AI แชทบอทอัจฉริยะ
- 🧠 How LangChain Works: A Deep Dive into the AI Framework Behind Smart Chatbots
- 🤖 為什麼中國中小企業現在就該使用 AI 聊天機器人?
- Why It's Time for Small Businesses to Start Using Chatbots – Globally
- 🤖 ถึงเวลาแล้ว! ทำไมธุรกิจ SME ไทยควรเริ่มใช้ "แชทบอท" วันนี้
- 🤖 日本の中小企業へ——今こそ「チャットボット」を導入すべき理由
- なぜ今、企業は LangChain チャットボットを導入しているのか?
- ทำไมธุรกิจยุคใหม่ถึงเลือกใช้แชทบอท LangChain? และคุณก็ควรเช่นกัน
- 为什么越来越多的企业选择 LangChain 聊天机器人?
- Why Smart Businesses Are Choosing LangChain Chatbots – And Why You Should Too
Our Products
Related Posts
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
- Integrating AI with Wazuh for Advanced Threat Detection
- AIはどのようにして偽造された高級品を検出するのか?
- AI ช่วยตรวจจับสินค้าหรูปลอมได้อย่างไร?
Articles
- simpliPOSのご紹介:ERPNextを基盤にしたスマートPOSシステム
- แนะนำ simpliPOS: ระบบ POS อัจฉริยะบน ERPNext
- Introducing simpliPOS: The Smart POS Built on ERPNext
- スマート農業をもっと簡単に:農業資材を効率的に管理・計画するアプリ
- 🧑🌾 การทำฟาร์มอย่างชาญฉลาด: เครื่องมือช่วยวางแผนและติดตามการใช้ปัจจัยการผลิตในฟาร์มอย่างง่ายดาย
- 🌾 Smart Farming Made Simple: A Tool to Help Farmers Track and Plan Inputs Efficiently
- MEEPで電磁波をシミュレーション:はじめてのFDTD入門
- จำลองคลื่นแม่เหล็กไฟฟ้าด้วย MEEP: บทนำสู่การจำลองทางฟิสิกส์
- Simulate Electromagnetic Waves with MEEP: A Hands-On Introduction
- 🧠 LangChain はどのように動作するのか?
- LangChain ทำงานอย่างไร? เจาะลึกเบื้องหลังสมองของ AI แชทบอทอัจฉริยะ
- 🧠 How LangChain Works: A Deep Dive into the AI Framework Behind Smart Chatbots
- 🤖 為什麼中國中小企業現在就該使用 AI 聊天機器人?
- Why It's Time for Small Businesses to Start Using Chatbots – Globally
- 🤖 ถึงเวลาแล้ว! ทำไมธุรกิจ SME ไทยควรเริ่มใช้ "แชทบอท" วันนี้
- 🤖 日本の中小企業へ——今こそ「チャットボット」を導入すべき理由
- なぜ今、企業は LangChain チャットボットを導入しているのか?
- ทำไมธุรกิจยุคใหม่ถึงเลือกใช้แชทบอท LangChain? และคุณก็ควรเช่นกัน
- 为什么越来越多的企业选择 LangChain 聊天机器人?
- Why Smart Businesses Are Choosing LangChain Chatbots – And Why You Should Too