วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
การตรวจจับวัตถุเป็นเทคโนโลยีที่สำคัญในอุตสาหกรรมต่างๆ เช่น ความปลอดภัย ระบบอัตโนมัติ และหุ่นยนต์ YOLO (You Only Look Once) เป็นหนึ่งในโมเดลตรวจจับวัตถุแบบเรียลไทม์ที่ได้รับความนิยมมากที่สุด เนื่องจากมีความเร็วและความแม่นยำสูง บทความนี้จะอธิบายวิธีฝึก YOLO โดยใช้ชุดข้อมูลที่กำหนดเอง เพื่อให้สามารถใช้งานจริงได้
ขั้นตอนที่ 1: ติดตั้งไลบรารีที่จำเป็น
ก่อนอื่นต้องติดตั้งไลบรารีที่จำเป็น การใช้ YOLOv5 หรือ YOLOv8 เวอร์ชันล่าสุดจะช่วยให้การฝึกง่ายขึ้น
# โคลนที่เก็บข้อมูล YOLOv5
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
# ติดตั้งแพ็คเกจที่จำเป็น
pip install -r requirements.txt
หากใช้ YOLOv8 สามารถติดตั้งแพ็คเกจ Ultralytics ได้โดยตรง:
pip install ultralytics
ขั้นตอนที่ 2: เตรียมชุดข้อมูล
YOLO ต้องการข้อมูลในรูปแบบเฉพาะ โดยแต่ละภาพจะต้องมีไฟล์กำกับฉลากในรูปแบบ YOLO:
<class_id> <x_center> <y_center> <width> <height>
ค่าทั้งหมดต้องถูกทำให้เป็นอัตราส่วนระหว่าง 0 ถึง 1 โครงสร้างโฟลเดอร์ของชุดข้อมูลควรเป็นดังนี้:
/dataset
├── images
│ ├── train
│ │ ├── img1.jpg
│ │ ├── img2.jpg
│ ├── val
│ ├── img3.jpg
│ ├── img4.jpg
├── labels
│ ├── train
│ │ ├── img1.txt
│ │ ├── img2.txt
│ ├── val
│ ├── img3.txt
│ ├── img4.txt
├── data.yaml
สร้างไฟล์ data.yaml
ไฟล์นี้ใช้กำหนดโครงสร้างชุดข้อมูลและชื่อคลาส:
train: /path/to/dataset/images/train
val: /path/to/dataset/images/val
nc: 2 # จำนวนคลาส
names: ['person', 'car'] # ชื่อคลาส
ขั้นตอนที่ 3: ฝึกโมเดล
ใช้คำสั่งต่อไปนี้เพื่อฝึก YOLOv5:
python train.py --img 640 --batch 16 --epochs 50 --data dataset/data.yaml --weights yolov5s.pt --cache
สำหรับ YOLOv8:
yolo train model=yolov8n.pt data=dataset/data.yaml epochs=50 imgsz=640
ขั้นตอนที่ 4: ตรวจสอบความคืบหน้าของการฝึก
YOLO จะบันทึกตัวชี้วัดประสิทธิภาพต่างๆ ระหว่างการฝึก หากใช้ YOLOv5 ผลลัพธ์จะถูกบันทึกใน runs/train/exp/ สามารถใช้ TensorBoard เพื่อตรวจสอบประสิทธิภาพของการฝึกได้:
tensorboard --logdir=runs/train
ขั้นตอนที่ 5: ประเมินและทดสอบโมเดล
หลังจากฝึกเสร็จแล้ว สามารถทดสอบโมเดลกับภาพใหม่ได้:
python detect.py --weights runs/train/exp/weights/best.pt --img 640 --source test_images/
สำหรับ YOLOv8:
yolo detect model=runs/train/exp/weights/best.pt source=test_images/
ขั้นตอนที่ 6: ส่งออกโมเดลสำหรับใช้งาน
สามารถส่งออกโมเดล YOLO เป็นหลายรูปแบบได้:
python export.py --weights runs/train/exp/weights/best.pt --include onnx torchscript
สำหรับ YOLOv8:
yolo export model=runs/train/exp/weights/best.pt format=onnx
สรุป
การฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเองช่วยให้สามารถตรวจจับวัตถุได้ในแอปพลิเคชันจริง เช่น ความปลอดภัย การตรวจสอบการจราจร และระบบอัตโนมัติ คู่มือฉบับนี้จะช่วยให้คุณเตรียมข้อมูล ฝึกโมเดล และนำไปใช้งานได้อย่างมีประสิทธิภาพ
หากต้องการความช่วยเหลือในการเตรียมชุดข้อมูลหรือปรับแต่งการฝึก แจ้งให้เราทราบในความคิดเห็น!
Get in Touch with us
Related Posts
- เปลี่ยนงาน COI ให้ง่ายขึ้นด้วย AI: ตัวอย่างใช้งานจริงในโรงงาน (Hybrid Rasa + LangChain)
- SimpliAgentic — อนาคตของโรงงานอัตโนมัติอัจฉริยะมาถึงแล้ว
- ทำไม “Android Internals” จึงสำคัญ — และบริการระดับสูงที่ธุรกิจของคุณสามารถสร้างได้จากความรู้นี้
- ทำไมธุรกิจควรพัฒนาระบบอีคอมเมิร์ซของตัวเอง (แทนการเช่าแพลตฟอร์มสำเร็จรูป)
- Upstream, Downstream และ Fork คืออะไร? คู่มือเข้าใจง่ายสำหรับนักพัฒนา Android & Linux
- บิ๊กเทคกำลังก่อ “ฟองสบู่ AI” อย่างไร? วิเคราะห์ NVIDIA, Microsoft, OpenAI, Google, Oracle และบทบาทของ AMD
- Deep Learning ในงานพัฒนาอสังหาริมทรัพย์
- บริการแก้โค้ดและดูแลระบบ Legacy — ทำให้ระบบธุรกิจของคุณเสถียร พร้อมใช้งานตลอดเวลา
- Python Deep Learning สำหรับโรงงานอัตโนมัติ: คู่มือฉบับสมบูรณ์ (อัปเดตปี 2025)
- บริการพัฒนาและฝึกอบรม Python สำหรับโรงงานอุตสาหกรรม (Factory Systems)
- ทำไม Python + Django คือ Tech Stack ที่ดีที่สุดในการสร้างระบบ eCommerce สมัยใหม่ (คู่มือฉบับสมบูรณ์ + แผนราคา)
- กลยุทธ์ซานซือหลิ่วจี (三十六计): คู่มือกลยุทธ์ธุรกิจจีนยุคใหม่ เข้าใจวิธีคิด การเจรจา และการแข่งขันแบบจีน
- เข้าใจ Training, Validation และ Testing ใน Machine Learning
- เข้าใจ Neural Network ให้ลึกจริง — ทำไมต้อง Convolution, ทำไม ReLU ต้องตามหลัง Conv2d และทำไมเลเยอร์ลึกขึ้นถึงเรียนรู้ฟีเจอร์ซับซ้อนขึ้น
- ระบบตรวจสอบความแท้ด้วย AI สำหรับแบรนด์ค้าปลีกยุคใหม่
- หนังสือเหนือกาลเวลา: เรียนรู้การคิดแบบนักฟิสิกส์ทดลอง
- SimpliBreakout: เครื่องมือสแกนหุ้น Breakout และแนวโน้มข้ามตลาด สำหรับเทรดเดอร์สายเทคนิค
- SimpliUni: แอปสมาร์ตแคมปัสที่ทำให้ชีวิตในมหาวิทยาลัยง่ายขึ้น
- พัฒนาโปรแกรมสแกนหุ้น Breakout หลายตลาดด้วย Python
- Agentic AI และ MCP Servers: ก้าวต่อไปของระบบอัตโนมัติอัจฉริยะ













