How to Apply RAG Chatbot with LangChain + Ollama
In this post, you'll learn how to build a powerful RAG (Retrieval-Augmented Generation) chatbot using LangChain and Ollama. We'll also show the full flow of how to add documents into your agent dynamically!
Let's go step-by-step.
What is RAG Chatbot?
RAG stands for Retrieval-Augmented Generation. Instead of a chatbot replying only from what it "knows" internally, it first retrieves relevant documents and then generates an intelligent, customized answer.
This approach makes your chatbot:
- More accurate
- Up-to-date with external knowledge
- Better at answering domain-specific questions
Tools We'll Use
- LangChain: Framework for chaining LLMs with retrieval, tools, agents.
- Ollama: Local LLM runner (models like
Mistral
,Llama3
, etc.). - FAISS: Local vector search for fast document retrieval.
Step 1: Setup
First, install the libraries:
pip install langchain ollama faiss-cpu
Make sure you have Ollama installed and running:
- https://ollama.com/
- Download a model (example:
mistral
,llama3
,phi3
, etc.)
Step 2: Basic RAG Chatbot Code
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.llms import Ollama
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
# 1. Documents
my_docs = [
Document(page_content="Python is a programming language created by Guido van Rossum."),
Document(page_content="LangChain helps build applications powered by language models."),
Document(page_content="The capital of Thailand is Bangkok."),
]
# 2. Split Documents
splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_docs = splitter.split_documents(my_docs)
# 3. Embedding
embedder = OllamaEmbeddings(model="nomic-embed-text")
# 4. FAISS Vector Store
vectorstore = FAISS.from_documents(split_docs, embedder)
# 5. Retriever
retriever = vectorstore.as_retriever()
# 6. LLM (Ollama)
llm = Ollama(model="mistral")
# 7. RetrievalQA Chain
rag_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
# 8. Ask a Question
query = "Who created Python?"
result = rag_chain({"query": query})
print("Answer:", result["result"])
print("Sources:", result["source_documents"])
Step 3: Add New Documents to Your Agent
You can dynamically add documents to your chatbot without restarting everything.
Here is the conceptual workflow in Mermaid.js:
graph TD
A[User Uploads New Document] --> B[Split into Chunks]
B --> C[Embed Chunks]
C --> D[Add Embeddings to Vectorstore]
D --> E[Retriever Automatically Updated]
E --> F[Chatbot Now Uses New Knowledge]
Python Code to Add New Document:
# Suppose you get a new document
new_doc = Document(page_content="Django is a popular Python web framework.")
# 1. Split
new_splits = splitter.split_documents([new_doc])
# 2. Embed
new_vectors = embedder.embed_documents([doc.page_content for doc in new_splits])
# 3. Add to FAISS
vectorstore.add_documents(new_splits)
# Now your retriever has fresh knowledge instantly!
Conclusion
Building a RAG chatbot with LangChain + Ollama is powerful and flexible. You can:
- Control your own models (no external APIs)
- Add new knowledge live
- Build super domain-specific chatbots
In production, you can scale this by connecting to:
- PDF loaders
- Website scrapers
- Database retrievers
The future is open-source, private, and customizable.
Stay tuned for Part 2 where we'll make the chatbot stream responses and keep conversation memory! 🚀
Related Posts
- LangChain + Ollama で RAGチャットボットを作る方法
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- 🧠 LangChain はどのように動作するのか?
- LangChain ทำงานอย่างไร? เจาะลึกเบื้องหลังสมองของ AI แชทบอทอัจฉริยะ
- 🧠 How LangChain Works: A Deep Dive into the AI Framework Behind Smart Chatbots
- 🤖 為什麼中國中小企業現在就該使用 AI 聊天機器人?
- Why It’s Time for Small Businesses to Start Using Chatbots – Globally
- 🤖 ถึงเวลาแล้ว! ทำไมธุรกิจ SME ไทยควรเริ่มใช้ “แชทบอท” วันนี้
- 🤖 日本の中小企業へ——今こそ「チャットボット」を導入すべき理由
- なぜ今、企業は LangChain チャットボットを導入しているのか?
Articles
- LangChain + Ollama で RAGチャットボットを作る方法
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
- Design Patterns That Help Tame Legacy Code (With Python Examples)
- 🧠 レガシーコードに安全に新機能を追加する方法
- วิธีเพิ่มฟีเจอร์ใหม่ในซอฟต์แวร์ Legacy อย่างปลอดภัย
- How to Safely Add New Features to Legacy Code — A Developer’s Guide
- レガシーソフトウェアを安全に近代化 — 全面リライト不要!
- ปรับปรุงซอฟต์แวร์เก่า ให้ทันสมัย โดยไม่ต้องเขียนใหม่ทั้งหมด
- Modernizing Legacy Software — Without Breaking Everything
- OpenSearchの仕組みとは?リアルタイム検索エンジンの内部構造を解説
- OpenSearch ทำงานอย่างไร? เข้าใจระบบค้นหาและวิเคราะห์ข้อมูลแบบเรียลไทม์
- How OpenSearch Works — Architecture, Internals & Real-Time Search Explained
- DjangoでBasicとPremium機能を分けるベストな戦略とは?
- เลือกกลยุทธ์ที่ใช่ สำหรับการแยกระดับผู้ใช้งาน Basic กับ Premium บน Django
Our Products
Related Posts
- LangChain + Ollama で RAGチャットボットを作る方法
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- 🧠 LangChain はどのように動作するのか?
- LangChain ทำงานอย่างไร? เจาะลึกเบื้องหลังสมองของ AI แชทบอทอัจฉริยะ
- 🧠 How LangChain Works: A Deep Dive into the AI Framework Behind Smart Chatbots
- 🤖 為什麼中國中小企業現在就該使用 AI 聊天機器人?
- Why It’s Time for Small Businesses to Start Using Chatbots – Globally
- 🤖 ถึงเวลาแล้ว! ทำไมธุรกิจ SME ไทยควรเริ่มใช้ “แชทบอท” วันนี้
- 🤖 日本の中小企業へ——今こそ「チャットボット」を導入すべき理由
- なぜ今、企業は LangChain チャットボットを導入しているのか?
Articles
- LangChain + Ollama で RAGチャットボットを作る方法
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
- Design Patterns That Help Tame Legacy Code (With Python Examples)
- 🧠 レガシーコードに安全に新機能を追加する方法
- วิธีเพิ่มฟีเจอร์ใหม่ในซอฟต์แวร์ Legacy อย่างปลอดภัย
- How to Safely Add New Features to Legacy Code — A Developer’s Guide
- レガシーソフトウェアを安全に近代化 — 全面リライト不要!
- ปรับปรุงซอฟต์แวร์เก่า ให้ทันสมัย โดยไม่ต้องเขียนใหม่ทั้งหมด
- Modernizing Legacy Software — Without Breaking Everything
- OpenSearchの仕組みとは?リアルタイム検索エンジンの内部構造を解説
- OpenSearch ทำงานอย่างไร? เข้าใจระบบค้นหาและวิเคราะห์ข้อมูลแบบเรียลไทม์
- How OpenSearch Works — Architecture, Internals & Real-Time Search Explained
- DjangoでBasicとPremium機能を分けるベストな戦略とは?
- เลือกกลยุทธ์ที่ใช่ สำหรับการแยกระดับผู้ใช้งาน Basic กับ Premium บน Django