まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
いま、「AIを使って次に売れる商品を予測するツール」を開発中です。
名前は仮で、AIプロダクトキュレーター。
このブログは、そのアイデアをテストするために書いています。
もし反響が大きければ、実際にプロダクト化します。
💡 背景:売れる商品って、どうやって見つける?
ネットショップをやっていると、必ずこんな悩みが出てきます:
「次に売れる商品って何?」
「今仕入れるべきアイテムは?」
でも、既存のリサーチツールは「すでに売れてるもの」を見せてくれるだけ。
それじゃ遅いんです。
今必要なのは、「これから売れそうな商品」を見つけるための仕組み。
🚀 アイデア:AIプロダクトキュレーター
このツールは、AIが商品データやSNSのトレンドを読み取り、
「まだ目立っていないけど、伸びそうな商品」をピックアップします。
まるで24時間働いてくれる「商品目利きスタッフ」のような存在です。
🧠 仕組み(プロトタイプ段階)
- 商品の説明文をTF-IDF + NLPで解析
- 人気スコアや価格などの数値も合わせて分析
- ロジスティック回帰で「流行りそうかどうか」を予測
- KMeansクラスタリングで類似商品のグルーピング
最終的に、こんな感じで商品が分類されます:
- ✅「これ、テストする価値アリ」
- 💤「これは今さら感…」
- 🧠「このカテゴリ、最近注目されてる」
🗺 システム構成図(Mermaid.js)
graph TD
A["スタート:商品アイデアのテスト"] --> B["商品データの収集"]
B --> C["説明文をTF-IDFでベクトル化"]
C --> D["価格・人気スコアなどと結合"]
D --> E["ロジスティック回帰モデルを学習"]
E --> F["トレンドになるか予測"]
D --> G["KMeansでクラスタリング"]
G --> H["類似商品のグルーピング"]
F --> I["注目すべき商品を選定"]
H --> I
I --> J["テスト・仕入れ候補リスト作成"]
J --> K["レビュー or 自動化処理"]
K --> L["ダッシュボードに展開"]
🛠 使用技術
- Python + Scikit-learn
- TF-IDF(テキスト解析)
- KMeansクラスタリング
- 今後追加予定 → Google Trends連携、GPTによる商品説明自動生成
🙋♀️ 興味ありますか?
これはまだ試作段階です。
もし使ってみたい方がいれば、先行利用バージョンを作ります。
👉 メールください: hello@simplico.net
👉 LINE ID: iiitum1984
「こんなツール欲しかった!」と思った方は、ぜひご連絡ください。
需要があれば、本気でプロダクト化します!
Get in Touch with us
Related Posts
- 次なるフロンティア:富裕層のためのデジタル・プライベートクラブ
- コードで「よりよく考える」:数学的ショートカットで大規模ソフトウェアを理解する
- 今日のMacrohardをつくる:企業向けAIエージェント・プラットフォーム
- Aider × IDE連携で Vue.js 開発を一気にスマートに!
- ねぇ開発者さん!Codex CLI や Aider で AIにコーディング手伝ってもらおうぜ
- 正しい方法でAIと共にコーディングする
- 最適なLLMモデルの選び方: Instruct・MLX・8-bit・Embedding
- ローカル LLM モデルを日常業務で活用する方法
- EmbeddingモデルとLLMを組み合わせて、より賢いAIアプリを作る方法
- 連続素材欠陥検出用スマートビジョンシステム
- ラインスキャン + AI で作るリアルタイム欠陥検出システム(汎用設計ガイド)
- ソースコードを読む方法:Frappe Framework を例に
- Interface-Oriented Design:クリーンアーキテクチャの基礎
- アンチドローンシステムのすべて ─ アーキテクチャ・ハードウェア・ソフトウェア徹底解説
- ドローンにおけるRTOS vs Linux:最新設計・セキュリティ・Rust活用法
- なぜSpringはアノテーションだらけ? JavaとPython Web開発の本質的な違い
- DjangoからSpring Bootへ:Web開発者のための実践ガイド
- クリーンアーキテクチャで大規模なPythonシステムを構築する(実践サンプル・図解付き)
- なぜTest-Driven Development(TDD)はビジネスに有利なのか
- Django × DigitalOcean × GitHub Actions × Docker で構築する継続的デリバリー(CD)環境