When to Choose Rasa vs Langchain for Building Chatbots
As AI chatbots become central to user interaction, developers are increasingly faced with an important decision: Should I use Rasa or Langchain?
While both are powerful frameworks for building conversational agents, they serve very different purposes. Choosing the right one depends on your use case, goals, and how much control you want over the conversation and its logic.
In this post, we’ll break down the strengths of each and help you make the right decision.
🔷 What is Rasa?
Rasa is an open-source framework for building reliable, rule-based or machine-learned task-oriented chatbots. It provides everything you need for:
- Intent classification
- Entity extraction
- Dialogue state tracking
- Custom conversation flows
- Form handling
- On-premise deployment
Typical use cases:
- Customer support
- Order tracking
- Appointment scheduling
- Internal HR or IT assistants
Rasa shines in predictable workflows and enterprise environments where data privacy, hosting control, and explainable logic matter.
🔷 What is Langchain?
Langchain is a framework for building LLM-powered agents. Instead of defining rules and intents, you let a large language model like GPT-4 or Claude think, reason, and act using tools like:
- Document search (via vector databases)
- Web APIs
- SQL databases
- Custom functions (Python REPL)
Langchain is best when you want a bot that:
- Reads and understands long documents
- Answers questions from a knowledge base
- Writes code, emails, or reports
- Performs multi-step reasoning
⚖️ Rasa vs Langchain: A Quick Comparison
Feature | Rasa | Langchain |
---|---|---|
Main purpose | Workflow-driven chatbot | LLM agent with tools & memory |
Best for | Customer service, forms, lead gen | Document Q\&A, smart assistants, coding bots |
Memory/Context | Dialogue state tracker | Chat history + vector store memory |
Training | Requires NLU training data | Mostly zero-shot with LLM prompting |
Hosting | Fully self-hosted possible | Usually cloud-hosted (depends on LLM API) |
LLM integration | Optional (via response selectors or custom code) | Core feature |
Ease of control | High — deterministic behavior | Less control — based on LLM generation |
Language support | Multilingual with NLU pipelines | Multilingual with LLM capabilities |
✅ When to Choose Rasa
Go with Rasa if:
- You need deterministic conversations with clear rules
- You want on-premise hosting and data privacy
- You’re handling structured workflows like ticketing or booking
- You need multilingual support with control
- You want fallback mechanisms and detailed analytics
Example:
A retail customer service bot that checks order status, initiates returns, and updates customer info across platforms.
✅ When to Choose Langchain
Choose Langchain if:
- You want a smart assistant that understands open-ended queries
- You need retrieval-augmented generation (RAG) from PDFs, Notion, etc.
- You want to use LLM tools (e.g., Google search, Python REPL, APIs)
- You’re building a bot that can reason, summarize, or generate content
Example:
A legal assistant that answers questions by reading PDF contracts and summarizing clauses.
🔁 Bonus: Use Rasa with Langchain
You don’t have to choose just one. For the best of both worlds:
- Use Rasa for controlling the conversation flow, intent recognition, and slot filling
- Call Langchain agents from Rasa when you need smart, generative answers
Example:
A support bot that handles product issues using Rasa, but sends queries to Langchain when a user asks to "summarize this user manual."
🧠 Conclusion
- Use Rasa for structured, explainable, task-driven bots with full control
- Use Langchain when you need flexible, intelligent, LLM-powered responses
- Combine both when you need structured conversations + smart reasoning
Understanding your users’ needs is the first step — then pick the right tool to serve them.
Get in Touch with us
Related Posts
- How TAK Systems Are Transforming Border Security
- ChatGPT-4o vs GPT-4.1 vs GPT-4.5: Which Model Is Best for You?
- Can Clients Decrypt Server Data Without the Private Key? (Spoiler: No—and Here’s Why)
- Managing JWT Authentication Across Multiple Frameworks
- Building a Lightweight EXFO Tester Admin Panel with FastAPI and Alpine.js
- Monitoring Cisco Network Devices with Wazuh: A Complete Guide
- Using FastAPI to Bridge Mobile Apps with OCPP EV Charging Systems
- Simulating EMC/EMI Coupling on a Naval Top Deck Using MEEP and Python
- How the TAK System Works: A Complete Guide for Real-Time Situational Awareness
- Building an E-commerce Website & Mobile App with Smart AI Integration — The Modern Way
- Personalized Recommendations Are Here — Powered by Smart Analytics
- Rasa vs LangChain vs Rasa + LangChain: Which One is Right for Your Business Chatbot?
- Understanding Wazuh by Exploring the Open Source Projects Behind It
- How to Integrate App Authentication with an OCPP Central System
- Beginner’s Guide: How EV Charging Apps Communicate, Track Charging, and Calculate Costs
- Building an OCPP 1.6 Central System with Flask async, WebSockets, and MongoDB
- How AI Supercharges Accounting and Inventory in Odoo (with Dev Insights)
- Building a Fullstack E-commerce System with JavaScript
- Building Agentic AI with Python, Langchain, and Ollama for eCommerce & Factory Automation
- Diagnosing the Root Cause of P0420 with Python, OBD-II, and Live Sensor Data