RasaとLangchain、どちらを選ぶべきか?チャットボット開発の選択基準
AIチャットボットの活用が急速に進む中、開発者にとって重要な問いがあります:
「Rasaを使うべきか?それともLangchainか?」
この2つのツールはどちらも非常に強力ですが、目的が大きく異なります。
この記事では、それぞれの強みを明確にし、どんな状況でどちらを選ぶべきかを解説します。
🔷 Rasaとは?
Rasaは、会話の流れを細かく制御できるオープンソースのチャットボットフレームワークです。
主な特徴:
- インテント(意図)やエンティティ(情報)の抽出
- 対話の状態管理(ステートトラッキング)
- フォーム機能によるデータ収集
- セルフホスティングによる高いセキュリティと柔軟性
📌 Rasaが得意なシナリオ:
- カスタマーサポート(注文状況の確認、返品受付)
- 予約管理
- FAQ対応
- 社内ヘルプデスク(IT/HR)
🔷 Langchainとは?
Langchainは、GPT-4などの大規模言語モデル(LLM)を中心に構築された「エージェント指向」フレームワークです。
主な特徴:
- LLMに質問し、自然な文章を生成
- ベクトルデータベースを活用したRAG(検索強化生成)
- 外部ツール(API、Python、Google検索など)との統合
- ドキュメントの要約・分析、コード生成なども可能
📌 Langchainが得意なシナリオ:
- 複雑な質問応答(例:PDFマニュアルから答えを抽出)
- 長文コンテンツの要約や分析
- プログラミング補助(コード生成や修正提案)
- 多段階の推論やツール利用を伴う会話
⚖️ Rasa vs Langchain:比較表
項目 | Rasa | Langchain |
---|---|---|
主な用途 | ワークフロー型チャットボット | LLMベースの知的エージェント |
会話の流れ | ルールと状態追跡で正確に制御 | 柔軟な生成(ただし一貫性の制御は難しい) |
メモリ・文脈保持 | Trackerによる会話履歴管理 | チャット履歴+ベクトルストア(長期記憶) |
学習の必要性 | 意図/エンティティのトレーニングが必要 | プロンプト設計のみ。モデルに学習データは不要 |
ホスティング | 完全なセルフホスティングが可能 | 多くの場合LLM API(外部依存) |
多言語対応 | 独自のパイプラインで多言語対応 | LLMが多言語を自然に処理 |
典型的な導入事例 | サポートチャットボット、予約管理、社内システム | ナレッジ検索ボット、法務アシスタント、コード補助など |
✅ Rasaを選ぶべきケース
- 明確な会話の流れ(ワークフロー)が必要な場合
- 意図やスロットに基づいた処理をしたい
- データセキュリティを重視(オンプレミス運用)
- 多言語・複雑な業務フローを安定して処理
📌 例:
顧客が注文状況を確認 → Rasaが注文番号を取得 → データベース照会 → 状況を返す
✅ Langchainを選ぶべきケース
- ドキュメントやナレッジから柔軟に答えるボットが必要
- 複雑な問い合わせ(例:「この契約書のリスクをまとめて」)に対応
- LLMにコードを書かせたい、要約させたい、複雑な推論をさせたい
📌 例:
顧客が「この製品マニュアルを要約して」と言う → LangchainがPDFを読んで要約を返す
🔁 RasaとLangchainを連携するハイブリッド構成も可能
- Rasaで意図・流れを管理し、特定のIntentでLangchainを呼び出す
- たとえば:「マニュアルを要約して」IntentでLangchainに処理を任せる
📌 この構成は、制御された会話 + 高度なAIの知能処理が必要なプロジェクトに最適です。
🧩 まとめ:どちらを選ぶべき?
条件 | 推奨ツール |
---|---|
明確な手続き型チャットボットが必要 | ✅ Rasa |
自由な知識検索や要約・推論が必要 | ✅ Langchain |
両方の長所を活かしたい | ✅ Rasa + Langchain |
📘 次のステップ
- ユーザーのニーズを明確にする
- 会話のパターンを設計する(固定型?柔軟型?)
- 必要に応じてハイブリッド構成を検討
Get in Touch with us
Related Posts
- TAKシステムが洪水災害対応を変革する
- 写真から商品をおすすめ:AIで実現するスマートショッピング
- 高度なシミュレーションプログラムでアンテナ結合の課題に取り組む
- 未来の働き方:オープンソースが切り拓く労働省力化オートメーション
- 次なるフロンティア:富裕層のためのデジタル・プライベートクラブ
- コードで「よりよく考える」:数学的ショートカットで大規模ソフトウェアを理解する
- 今日のMacrohardをつくる:企業向けAIエージェント・プラットフォーム
- Aider × IDE連携で Vue.js 開発を一気にスマートに!
- ねぇ開発者さん!Codex CLI や Aider で AIにコーディング手伝ってもらおうぜ
- 正しい方法でAIと共にコーディングする
- 最適なLLMモデルの選び方: Instruct・MLX・8-bit・Embedding
- ローカル LLM モデルを日常業務で活用する方法
- EmbeddingモデルとLLMを組み合わせて、より賢いAIアプリを作る方法
- 連続素材欠陥検出用スマートビジョンシステム
- ラインスキャン + AI で作るリアルタイム欠陥検出システム(汎用設計ガイド)
- ソースコードを読む方法:Frappe Framework を例に
- Interface-Oriented Design:クリーンアーキテクチャの基礎
- アンチドローンシステムのすべて ─ アーキテクチャ・ハードウェア・ソフトウェア徹底解説
- ドローンにおけるRTOS vs Linux:最新設計・セキュリティ・Rust活用法
- なぜSpringはアノテーションだらけ? JavaとPython Web開発の本質的な違い