From Django to Spring Boot: A Practical, Visual Guide for Web Developers
Are you a Python/Django developer thinking about jumping into the Java/Spring Boot ecosystem?
This post walks you through the parallels, project setup, Dockerization, handling database migrations, and introduces reactive programming with WebFlux—with diagrams to make it all clear!
1. Why Compare Django and Spring Boot?
Django and Spring Boot are both powerful frameworks, but their philosophies and workflows differ:
- Django is “batteries-included,” offering ORM, admin, migrations, and more out of the box.
- Spring Boot is modular and enterprise-focused, offering massive flexibility and integration options.
2. Django vs Spring Boot: At a Glance
| Django | Spring Boot / JPA / Flyway / Thymeleaf |
|---|---|
models.Model |
@Entity Java class |
makemigrations/migrate |
Manual SQL with Flyway/Liquibase |
views.py |
@Controller or @RestController |
urls.py |
@RequestMapping/@GetMapping, etc. |
| Templates | Thymeleaf templates |
| Built-in Admin | No default—build your own or use plugins |
| User Auth/Security | Spring Security |
| Static files | src/main/resources/static/ |
Django vs Spring Boot Stack Diagram
flowchart TD
A["Django (Python)"]
--> B1["ORM (Built-in)"]
--> B2["Admin Panel"]
--> B3["Migrations (makemigrations)"]
--> B4["Templates"]
--> B5["URLs"]
C["Spring Boot (Java)"]
--> D1["JPA/Hibernate ORM"]
--> D2["Manual/Admin UI or Spring Boot Admin"]
--> D3["Migrations (Flyway/Liquibase)"]
--> D4["Thymeleaf, REST, or other templates"]
--> D5["Controllers with @RequestMapping"]
3. Setting Up a Spring Boot Project with Database
- Use Spring Initializr to create your project.
- Define Java entities with
@Entity. - Connect to PostgreSQL (or another DB) in
application.properties:
spring.datasource.url=jdbc:postgresql://db:5432/mydb
spring.datasource.username=myuser
spring.datasource.password=mypass
spring.jpa.hibernate.ddl-auto=update
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
4. Docker Compose: Spring Boot + PostgreSQL
Containerizing your app with Docker Compose is the new standard for local dev and deployment.
Sample docker-compose.yml:
version: '3.8'
services:
db:
image: postgres:16
environment:
POSTGRES_DB: mydb
POSTGRES_USER: myuser
POSTGRES_PASSWORD: mypass
ports:
- "5432:5432"
app:
build: .
depends_on:
- db
ports:
- "8080:8080"
Multi-stage Dockerfile:
FROM maven:3.9.6-eclipse-temurin-21 as build
WORKDIR /app
COPY . .
RUN mvn clean package -DskipTests
FROM openjdk:21-jdk-slim
WORKDIR /app
COPY --from=build /app/target/*.jar app.jar
ENTRYPOINT ["java", "-jar", "app.jar"]
Start everything with:
docker compose up --build
Docker Compose Architecture Diagram
flowchart LR
subgraph Docker Compose
A["Spring Boot App<br/> (app)"]
B["(PostgreSQL DB<br/> (db))"]
end
A <-- JDBC --> B
C[Browser / Client] -->|HTTP:8080| A
5. Database Migrations: Django vs Spring Boot
- Django:
makemigrations&migrateauto-generate and apply migrations from model changes. - Spring Boot:
Use Flyway or Liquibase.
You write migration SQL scripts and place them insrc/main/resources/db/migration/.
Sample Flyway migration (V1__init.sql):
CREATE TABLE book (
id SERIAL PRIMARY KEY,
title VARCHAR(255),
author VARCHAR(255)
);
No “makemigrations” equivalent by default; advanced IDE plugins or Liquibase’s diff can help.
6. Mapping Django Actions to Spring Boot
| Django Command / Concept | Spring Boot Equivalent |
|---|---|
python manage.py runserver |
./mvnw spring-boot:run or docker compose up |
python manage.py makemigrations |
Write SQL migration for Flyway/Liquibase |
python manage.py migrate |
Spring Boot runs migrations on startup |
models.Model |
Java class with @Entity |
views.py |
Java class with @Controller or @RestController |
urls.py |
Java method annotations (@GetMapping, etc.) |
Quick Mapping Diagram:
flowchart TD
subgraph Django
D1["Model (models.Model)"]
D2["View (views.py)"]
D3["URLConf (urls.py)"]
D4[Template]
D5["Migration (makemigrations/migrate)"]
D6["Admin (admin.py)"]
end
subgraph Spring Boot
S1["Entity (@Entity)"]
S2["Controller (@Controller)"]
S3["Request Mapping (@GetMapping, etc.)"]
S4["Template (Thymeleaf)"]
S5["Migration (Flyway/Liquibase SQL)"]
S6[No built-in admin UI]
end
D1 --- S1
D2 --- S2
D3 --- S3
D4 --- S4
D5 --- S5
D6 --- S6
7. Pros and Cons: Django vs Spring Boot
| Feature | Django (Python) | Spring Boot (Java) |
|---|---|---|
| Easy to start | ✅ Built-in admin, migrations | ⚠️ More setup, no admin by default |
| Enterprise scale | ⚠️ Limited for large systems | ✅ Designed for enterprise |
| Performance | Good for most cases | Excellent at massive scale |
| Learning curve | Easier, great for fast MVPs | Steep, more configuration |
| Flexibility | “Do it the Django way” | Highly modular, integrate anything |
8. Introduction to WebFlux: Modern Reactive APIs
Spring WebFlux enables non-blocking, reactive APIs that scale to thousands of concurrent connections, perfect for chat, streaming, and IoT.
Sample Reactive Controller:
@RestController
@RequestMapping("/api")
public class ReactiveController {
@GetMapping("/hello")
public Mono<String> sayHello() {
return Mono.just("Hello, Reactive World!");
}
@GetMapping("/numbers")
public Flux<Integer> streamNumbers() {
return Flux.range(1, 5);
}
}
Add WebFlux via:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>
WebFlux Reactive Flow Diagram
sequenceDiagram
participant Client
participant WebFlux
participant Service
participant Database
Client->>WebFlux: HTTP Request (e.g., /api/stream)
WebFlux->>Service: Non-blocking call (Mono/Flux)
Service->>Database: Reactive DB access (async)
Database-->>Service: Data stream (Flux/Mono)
Service-->>WebFlux: Reactive response (Flux/Mono)
WebFlux-->>Client: HTTP Response (streamed data)
9. Conclusion
- Django: Perfect for quick MVPs, admin panels, and “classic” web apps.
- Spring Boot: Ideal for scalable, enterprise, or complex microservices—especially with Java experience.
- WebFlux: Choose it for reactive, high-concurrency needs like chat, IoT, or live streaming APIs.
Get in Touch with us
Related Posts
- NVIDIA、Microsoft、OpenAI、Google、Oracle 以及 AMD:正在共同推动 AI 泡沫如何形成?
- The Real AI Bubble: How NVIDIA, Microsoft, OpenAI, Google, Oracle — and Now AMD — Shape the Future of Compute
- 深度学习在房地产开发中的应用
- Deep Learning in Property Development
- 代码修复与遗留系统维护服务 —— Simplico 助力企业保持系统稳定、安全、高效
- Code Fixing & Legacy System Maintenance — Keep Your Business Running Smoothly with Simplico
- Python 深度学习在工厂自动化中的应用:2025 全面指南
- Python Deep Learning in Factory Automation: A Complete Guide (2025)
- 工厂 / 制造业专用 Python 开发与培训服务
- Python Development & Industrial Automation Training Services
- 为什么 Python + Django 是现代电商系统的最佳技术栈(完整指南 + 定价方案)
- Why Python + Django Is the Best Tech Stack for Building Modern eCommerce Platforms (Complete Guide + Pricing Plans)
- 三十六计现代商业版:理解中国企业竞争、谈判与战略思维的终极指南
- The 36 Chinese Business Stratagems: A Modern Guide to Understanding How Chinese Companies Compete and Win
- 理解机器学习中的 Training、Validation、Testing
- Understanding Training, Validation, and Testing in Machine Learning
- 深入理解神经网络
- Understanding Neural Networks Deeply
- AI 商品真伪鉴定系统:为现代零售品牌打造的智能解决方案
- AI-Powered Product Authenticity Verification for Modern Retail Brands













