From Django to Spring Boot: A Practical, Visual Guide for Web Developers
Are you a Python/Django developer thinking about jumping into the Java/Spring Boot ecosystem?
This post walks you through the parallels, project setup, Dockerization, handling database migrations, and introduces reactive programming with WebFlux—with diagrams to make it all clear!
1. Why Compare Django and Spring Boot?
Django and Spring Boot are both powerful frameworks, but their philosophies and workflows differ:
- Django is “batteries-included,” offering ORM, admin, migrations, and more out of the box.
- Spring Boot is modular and enterprise-focused, offering massive flexibility and integration options.
2. Django vs Spring Boot: At a Glance
| Django | Spring Boot / JPA / Flyway / Thymeleaf |
|---|---|
models.Model |
@Entity Java class |
makemigrations/migrate |
Manual SQL with Flyway/Liquibase |
views.py |
@Controller or @RestController |
urls.py |
@RequestMapping/@GetMapping, etc. |
| Templates | Thymeleaf templates |
| Built-in Admin | No default—build your own or use plugins |
| User Auth/Security | Spring Security |
| Static files | src/main/resources/static/ |
Django vs Spring Boot Stack Diagram
flowchart TD
A["Django (Python)"]
--> B1["ORM (Built-in)"]
--> B2["Admin Panel"]
--> B3["Migrations (makemigrations)"]
--> B4["Templates"]
--> B5["URLs"]
C["Spring Boot (Java)"]
--> D1["JPA/Hibernate ORM"]
--> D2["Manual/Admin UI or Spring Boot Admin"]
--> D3["Migrations (Flyway/Liquibase)"]
--> D4["Thymeleaf, REST, or other templates"]
--> D5["Controllers with @RequestMapping"]
3. Setting Up a Spring Boot Project with Database
- Use Spring Initializr to create your project.
- Define Java entities with
@Entity. - Connect to PostgreSQL (or another DB) in
application.properties:
spring.datasource.url=jdbc:postgresql://db:5432/mydb
spring.datasource.username=myuser
spring.datasource.password=mypass
spring.jpa.hibernate.ddl-auto=update
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
4. Docker Compose: Spring Boot + PostgreSQL
Containerizing your app with Docker Compose is the new standard for local dev and deployment.
Sample docker-compose.yml:
version: '3.8'
services:
db:
image: postgres:16
environment:
POSTGRES_DB: mydb
POSTGRES_USER: myuser
POSTGRES_PASSWORD: mypass
ports:
- "5432:5432"
app:
build: .
depends_on:
- db
ports:
- "8080:8080"
Multi-stage Dockerfile:
FROM maven:3.9.6-eclipse-temurin-21 as build
WORKDIR /app
COPY . .
RUN mvn clean package -DskipTests
FROM openjdk:21-jdk-slim
WORKDIR /app
COPY --from=build /app/target/*.jar app.jar
ENTRYPOINT ["java", "-jar", "app.jar"]
Start everything with:
docker compose up --build
Docker Compose Architecture Diagram
flowchart LR
subgraph Docker Compose
A["Spring Boot App<br/> (app)"]
B["(PostgreSQL DB<br/> (db))"]
end
A <-- JDBC --> B
C[Browser / Client] -->|HTTP:8080| A
5. Database Migrations: Django vs Spring Boot
- Django:
makemigrations&migrateauto-generate and apply migrations from model changes. - Spring Boot:
Use Flyway or Liquibase.
You write migration SQL scripts and place them insrc/main/resources/db/migration/.
Sample Flyway migration (V1__init.sql):
CREATE TABLE book (
id SERIAL PRIMARY KEY,
title VARCHAR(255),
author VARCHAR(255)
);
No “makemigrations” equivalent by default; advanced IDE plugins or Liquibase’s diff can help.
6. Mapping Django Actions to Spring Boot
| Django Command / Concept | Spring Boot Equivalent |
|---|---|
python manage.py runserver |
./mvnw spring-boot:run or docker compose up |
python manage.py makemigrations |
Write SQL migration for Flyway/Liquibase |
python manage.py migrate |
Spring Boot runs migrations on startup |
models.Model |
Java class with @Entity |
views.py |
Java class with @Controller or @RestController |
urls.py |
Java method annotations (@GetMapping, etc.) |
Quick Mapping Diagram:
flowchart TD
subgraph Django
D1["Model (models.Model)"]
D2["View (views.py)"]
D3["URLConf (urls.py)"]
D4[Template]
D5["Migration (makemigrations/migrate)"]
D6["Admin (admin.py)"]
end
subgraph Spring Boot
S1["Entity (@Entity)"]
S2["Controller (@Controller)"]
S3["Request Mapping (@GetMapping, etc.)"]
S4["Template (Thymeleaf)"]
S5["Migration (Flyway/Liquibase SQL)"]
S6[No built-in admin UI]
end
D1 --- S1
D2 --- S2
D3 --- S3
D4 --- S4
D5 --- S5
D6 --- S6
7. Pros and Cons: Django vs Spring Boot
| Feature | Django (Python) | Spring Boot (Java) |
|---|---|---|
| Easy to start | ✅ Built-in admin, migrations | ⚠️ More setup, no admin by default |
| Enterprise scale | ⚠️ Limited for large systems | ✅ Designed for enterprise |
| Performance | Good for most cases | Excellent at massive scale |
| Learning curve | Easier, great for fast MVPs | Steep, more configuration |
| Flexibility | “Do it the Django way” | Highly modular, integrate anything |
8. Introduction to WebFlux: Modern Reactive APIs
Spring WebFlux enables non-blocking, reactive APIs that scale to thousands of concurrent connections, perfect for chat, streaming, and IoT.
Sample Reactive Controller:
@RestController
@RequestMapping("/api")
public class ReactiveController {
@GetMapping("/hello")
public Mono<String> sayHello() {
return Mono.just("Hello, Reactive World!");
}
@GetMapping("/numbers")
public Flux<Integer> streamNumbers() {
return Flux.range(1, 5);
}
}
Add WebFlux via:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>
WebFlux Reactive Flow Diagram
sequenceDiagram
participant Client
participant WebFlux
participant Service
participant Database
Client->>WebFlux: HTTP Request (e.g., /api/stream)
WebFlux->>Service: Non-blocking call (Mono/Flux)
Service->>Database: Reactive DB access (async)
Database-->>Service: Data stream (Flux/Mono)
Service-->>WebFlux: Reactive response (Flux/Mono)
WebFlux-->>Client: HTTP Response (streamed data)
9. Conclusion
- Django: Perfect for quick MVPs, admin panels, and “classic” web apps.
- Spring Boot: Ideal for scalable, enterprise, or complex microservices—especially with Java experience.
- WebFlux: Choose it for reactive, high-concurrency needs like chat, IoT, or live streaming APIs.
Get in Touch with us
Related Posts
- 边缘计算中的计算机视觉:低算力环境下的挑战与中国市场的新机遇
- Computer Vision in Edge Devices & Low-Resource Environments: Challenges & Opportunities
- Simplico —— 面向中国市场的企业级 AI 自动化与定制软件解决方案
- Simplico — AI Automation & Custom Software Solutions
- 中国版:基于 AI 的预测性维护——从传感器到预测模型的完整解析
- AI for Predictive Maintenance: From Sensors to Prediction Models
- 会计行业中的 AI 助手——能做什么,不能做什么
- AI Assistants for Accountants: What They Can and Cannot Do
- 为什么中小企业在 ERP 定制上花费过高?— 深度解析与解决方案
- Why SMEs Overpay for ERP Customization — And How to Prevent It
- 为什么我们打造 SimpliShop —— 为中国企业提供可扩展、可集成、可定制的电商系统
- Why SimpliShop Was Built — And How It Helps Businesses Grow Faster Worldwide
- Fine-Tuning 与 Prompt Engineering 有什么区别? —— 给中国企业的 AI 应用实战指南
- Fine-Tuning vs Prompt Engineering Explained
- 精准灌溉(Precision Irrigation)入门
- Introduction to Precision Irrigation
- 物联网传感器并不是智慧农业的核心——真正的挑战是“数据整合
- IoT Sensors Are Overrated — Data Integration Is the Real Challenge
- React / React Native 移动应用开发服务提案书(面向中国市场)
- Mobile App Development Using React & React Native













