How to Use Embedding Models with LLMs for Smarter AI Applications
In today’s AI landscape, Large Language Models (LLMs) like GPT-4, Llama-3, or Qwen2.5 grab all the headlines — but if you want them to work with your data, you need another type of model alongside them: embedding models.
In this post, we’ll explore what embeddings are, why they matter, and how to combine them with LLMs to build powerful applications like semantic search and Retrieval-Augmented Generation (RAG).
1. What is an Embedding Model?
An embedding model converts text (or other data) into a list of numbers — a vector — that captures the meaning of the content.
In this vector space, similar ideas are located close together, even if the exact words are different.
Example:
"dog" → [0.12, -0.09, 0.33, ...]
"puppy" → [0.11, -0.08, 0.31, ...] ← close in meaning
"airplane" → [-0.44, 0.88, 0.05, ...] ← far in meaning
Popular embedding models:
- OpenAI:
text-embedding-3-large(3072 dims),text-embedding-3-small(1536 dims) - Local:
mxbai-embed-large,all-MiniLM-L6-v2,Qwen3-Embedding-0.6B-GGUF - Multilingual:
embed-multilingual-v3.0(Cohere)
2. Why Pair Embeddings with LLMs?
LLMs are great at reasoning and generating text — but they can’t magically access your private data unless you feed it to them.
Embedding models solve this by enabling semantic retrieval from your data store.
This combination is the backbone of RAG:
- Embedding Model → Converts all your documents into vectors and stores them in a vector database.
- LLM → Uses your question, retrieves relevant chunks from the DB, and generates an answer using them.
3. The RAG Pipeline in Action
graph TD
A["User Question"] --> B["Embedding Model → Query Vector"]
B --> C["Vector DB → Find Similar Document Vectors"]
C --> D["Relevant Docs"]
D --> E["LLM → Combine Question + Docs → Final Answer"]
Step-by-step
Step 1: Preprocess & Store Documents
- Split documents into chunks (e.g., 500 tokens each).
- Use the embedding model to convert each chunk into a vector.
- Store vectors + metadata in a vector database (e.g., Qdrant, Milvus, Weaviate).
Step 2: Handle User Queries
- Convert the query into a vector using the same embedding model.
- Search for the nearest vectors in the DB.
- Retrieve the original text chunks.
Step 3: Generate the Answer
- Pass both the query and retrieved chunks into your LLM prompt.
- Let the LLM compose a coherent, accurate answer.
4. Code Example: OpenAI API + Qdrant + GPT-4
from openai import OpenAI
import qdrant_client
# Setup
client = OpenAI(api_key="YOUR_KEY")
qdrant = qdrant_client.QdrantClient(":memory:")
# 1. Embed a document
doc = "Durian is a tropical fruit grown in Southeast Asia."
embedding = client.embeddings.create(
model="text-embedding-3-large",
input=doc
).data[0].embedding
# Store in Qdrant
qdrant.recreate_collection("docs", vector_size=len(embedding))
qdrant.upsert("docs", [(0, embedding, {"text": doc})])
# 2. Embed a query
query = "Where is durian grown?"
query_vec = client.embeddings.create(
model="text-embedding-3-large",
input=query
).data[0].embedding
# Search
results = qdrant.search("docs", query_vec, limit=1)
context = results[0].payload["text"]
# 3. Ask the LLM with retrieved context
answer = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "Answer based on the provided context."},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {query}"}
]
)
print(answer.choices[0].message["content"])
5. Best Practices
- Match the embedding model to your domain (multilingual if needed).
- Chunk size matters: too small = loss of context; too big = poor match quality.
- Keep embedding and query models the same for best similarity scoring.
- Use LLMs with long context windows if you plan to retrieve many chunks.
6. When to Use This Approach
- Knowledge base Q\&A
- Semantic search over large corpora
- Chatbots that “remember” your documents
- Contextual assistants in enterprise apps
Final Thought
The magic of combining embedding models with LLMs is that you get the precision of search and the fluency of generation in one pipeline.
That’s why nearly every serious AI-powered application — from ChatGPT Enterprise to local RAG bots — uses this two-model setup.
Get in Touch with us
Related Posts
- SimpliMES Lite — 面向中国中小型制造企业的轻量化 MES 解决方案
- SimpliMES Lite — Lightweight MES for Small & Mid-Sized Manufacturers
- Nursing-Care Robots: How Open-Source Technology Is Powering the Future of Elderly Care
- 为什么中国大模型正在成为电商系统的新引擎?
- 为什么成功的线上卖家都选择 SimpliShop:打造、成长、并持续领先你的市场
- Why Successful Online Sellers Choose SimpliShop: Build, Grow, and Win Your Market
- AI 垂直整合:未来企业竞争力的核心引擎
- Vertical Integration of AI: The Next Breakthrough in Modern Business
- AI 预测系统 —— 让你的决策拥有「超级力量」
- AI Prediction Systems — Turn Your Decisions Into Superpowers
- 如果 AI 泡沫破裂,会发生什么?(现实、理性、不夸张的深度分析)
- If the AI Bubble Ends, What Will Actually Happen? (A Realistic, No-Hype Analysis)
- 深度学习 + 新闻情绪分析进行股票价格预测(完整实战指南)
- Using Deep Learning + News Sentiment to Predict Stock Prices (A Practical Guide)
- 用 AI 改造 COI 管理:真实工厂案例解析(Hybrid Rasa + LangChain)
- How AI Transforms COI Management: A Real Factory Use Case (Hybrid Rasa + LangChain)
- SimpliAgentic —— 新一代自律智能工厂,从这里开始
- SimpliAgentic — The Future of Autonomous Factory Automation Has Arrived
- 为什么理解 Android Internals(安卓内部机制)如此重要?——帮助企业打造高价值系统级服务
- Why Android Internals Matter — And the High-Value Services Your Business Can Build With Them













