How to Use Embedding Models with LLMs for Smarter AI Applications
In today’s AI landscape, Large Language Models (LLMs) like GPT-4, Llama-3, or Qwen2.5 grab all the headlines — but if you want them to work with your data, you need another type of model alongside them: embedding models.
In this post, we’ll explore what embeddings are, why they matter, and how to combine them with LLMs to build powerful applications like semantic search and Retrieval-Augmented Generation (RAG).
1. What is an Embedding Model?
An embedding model converts text (or other data) into a list of numbers — a vector — that captures the meaning of the content.
In this vector space, similar ideas are located close together, even if the exact words are different.
Example:
"dog" → [0.12, -0.09, 0.33, ...]
"puppy" → [0.11, -0.08, 0.31, ...] ← close in meaning
"airplane" → [-0.44, 0.88, 0.05, ...] ← far in meaning
Popular embedding models:
- OpenAI:
text-embedding-3-large
(3072 dims),text-embedding-3-small
(1536 dims) - Local:
mxbai-embed-large
,all-MiniLM-L6-v2
,Qwen3-Embedding-0.6B-GGUF
- Multilingual:
embed-multilingual-v3.0
(Cohere)
2. Why Pair Embeddings with LLMs?
LLMs are great at reasoning and generating text — but they can’t magically access your private data unless you feed it to them.
Embedding models solve this by enabling semantic retrieval from your data store.
This combination is the backbone of RAG:
- Embedding Model → Converts all your documents into vectors and stores them in a vector database.
- LLM → Uses your question, retrieves relevant chunks from the DB, and generates an answer using them.
3. The RAG Pipeline in Action
graph TD
A["User Question"] --> B["Embedding Model → Query Vector"]
B --> C["Vector DB → Find Similar Document Vectors"]
C --> D["Relevant Docs"]
D --> E["LLM → Combine Question + Docs → Final Answer"]
Step-by-step
Step 1: Preprocess & Store Documents
- Split documents into chunks (e.g., 500 tokens each).
- Use the embedding model to convert each chunk into a vector.
- Store vectors + metadata in a vector database (e.g., Qdrant, Milvus, Weaviate).
Step 2: Handle User Queries
- Convert the query into a vector using the same embedding model.
- Search for the nearest vectors in the DB.
- Retrieve the original text chunks.
Step 3: Generate the Answer
- Pass both the query and retrieved chunks into your LLM prompt.
- Let the LLM compose a coherent, accurate answer.
4. Code Example: OpenAI API + Qdrant + GPT-4
from openai import OpenAI
import qdrant_client
# Setup
client = OpenAI(api_key="YOUR_KEY")
qdrant = qdrant_client.QdrantClient(":memory:")
# 1. Embed a document
doc = "Durian is a tropical fruit grown in Southeast Asia."
embedding = client.embeddings.create(
model="text-embedding-3-large",
input=doc
).data[0].embedding
# Store in Qdrant
qdrant.recreate_collection("docs", vector_size=len(embedding))
qdrant.upsert("docs", [(0, embedding, {"text": doc})])
# 2. Embed a query
query = "Where is durian grown?"
query_vec = client.embeddings.create(
model="text-embedding-3-large",
input=query
).data[0].embedding
# Search
results = qdrant.search("docs", query_vec, limit=1)
context = results[0].payload["text"]
# 3. Ask the LLM with retrieved context
answer = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "Answer based on the provided context."},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {query}"}
]
)
print(answer.choices[0].message["content"])
5. Best Practices
- Match the embedding model to your domain (multilingual if needed).
- Chunk size matters: too small = loss of context; too big = poor match quality.
- Keep embedding and query models the same for best similarity scoring.
- Use LLMs with long context windows if you plan to retrieve many chunks.
6. When to Use This Approach
- Knowledge base Q\&A
- Semantic search over large corpora
- Chatbots that “remember” your documents
- Contextual assistants in enterprise apps
Final Thought
The magic of combining embedding models with LLMs is that you get the precision of search and the fluency of generation in one pipeline.
That’s why nearly every serious AI-powered application — from ChatGPT Enterprise to local RAG bots — uses this two-model setup.
Get in Touch with us
Related Posts
- Smart Vision System for Continuous Material Defect Detection
- Building a Real-Time Defect Detector with Line-Scan + ML (Reusable Playbook)
- How to Read Source Code: Frappe Framework Sample
- Interface-Oriented Design: The Foundation of Clean Architecture
- Understanding Anti-Drone Systems: Architecture, Hardware, and Software
- RTOS vs Linux in Drone Systems: Modern Design, Security, and Rust for Next-Gen Drones
- Why Does Spring Use So Many Annotations? Java vs. Python Web Development Explained
- From Django to Spring Boot: A Practical, Visual Guide for Web Developers
- How to Build Large, Maintainable Python Systems with Clean Architecture: Concepts & Real-World Examples
- Why Test-Driven Development Makes Better Business Sense
- Continuous Delivery for Django on DigitalOcean with GitHub Actions & Docker
- Build a Local Product Recommendation System with LangChain, Ollama, and Open-Source Embeddings
- 2025 Guide: Comparing the Top Mobile App Frameworks (Flutter, React Native, Expo, Ionic, and More)
- Understanding `np.meshgrid()` in NumPy: Why It’s Needed and What Happens When You Swap It
- How to Use PyMeasure for Automated Instrument Control and Lab Experiments
- Supercharge Your Chatbot: Custom API Integration Services for Your Business
- How to Guess an Equation Without Math: Exploring Cat vs. Bird Populations
- How to Build an AI-Resistant Project: Ideas That Thrive on Human Interaction
- Build Your Own Cybersecurity Lab with GNS3 + Wazuh + Docker: Train, Detect, and Defend in One Platform
- How to Simulate and Train with Network Devices Using GNS3