The Real AI Bubble: How NVIDIA, Microsoft, OpenAI, Google, Oracle — and Now AMD — Shape the Future of Compute
The global AI boom is driven by unprecedented demand for computing power. But beneath the hype lies a complex ecosystem of tech giants, GPU suppliers, AI labs, and cloud providers, all feeding into a feedback loop that many analysts now describe as an AI bubble.
In this post, we map the entire system — including AMD, which has recently entered the spotlight as the strongest challenger to NVIDIA’s dominance.
🌐 1. The Core AI Bubble Loop (2023–2025)
The modern AI race is powered by a simple but explosive feedback cycle:
AI Labs → Need More Compute → Cloud Providers Buy GPUs → NVIDIA Supplies GPUs →
NVIDIA Valuation Rises → AI Labs Raise More Money → Repeat
This loop has created the largest technology capex boom in history.
The Loop Components:
- AI Labs: OpenAI, Anthropic, xAI, Meta
- Cloud Providers: Microsoft Azure, AWS, Google Cloud, Oracle Cloud
- GPU Supplier: NVIDIA
- Bubble Catalyst: Increasing model size and compute demand
Every new model (GPT-4 → GPT-5 → GPT-next) multiplies compute demand by 2–10×, pushing the bubble further.
🟦 2. NVIDIA: The Center of the AI Bubble
NVIDIA sits at the heart of the boom. It supplies:
- H100
- H200
- B100
- GB200
- And the CUDA ecosystem (the true moat)
NVIDIA enjoys:
- ~95% market share in AI accelerators
- Record-breaking margins
- Unmatched demand backlog
- Dependency from every frontier AI lab
NVIDIA = Bubble King.
🟧 3. Microsoft: The Bubble Amplifier
Microsoft amplified the bubble by:
- Investing >$13B into OpenAI
- Running nearly all OpenAI workloads on Azure
- Buying massive GPU inventory from NVIDIA
- Building “AI factories” worldwide
- Launching its own Maia AI chips
Microsoft is both driver and beneficiary of the cycle.
🔵 4. OpenAI: The Bubble Engine
OpenAI ignites the cycle by demanding:
- Larger GPU clusters
- Faster interconnects
- More global compute
Training GPT-4 and GPT-5 requires tens of thousands of NVIDIA GPUs, pushing cloud and hardware demand into extreme territory.
🟩 5. Google: The Vertical Integrator (Not in the Bubble Loop)
Google is a major AI player but does not participate in the NVIDIA bubble.
Why?
It built an independent stack:
- TPU chips (v4, v5e, v6e)
- Google DeepMind research
- Gemini model family
- Google-owned datacenters
Google buys far fewer NVIDIA GPUs, avoiding the boom-bust cycle.
Google is an AI leader, but not a bubble driver.
🟥 6. Oracle: The Unexpected Winner
Oracle Cloud (OCI) became an AI boom winner because:
- It offered cheaper GPU clusters
- It partnered with xAI, Cohere, Adept
- It aggressively bought thousands of H100 GPUs
Oracle moved from legacy database company → AI infrastructure powerhouse.
🟪 7. AMD: The Bubble Challenger
Now we add AMD, the company everyone is watching.
💥 AMD is the only realistic challenger to NVIDIA’s monopoly.
Recent AMD AI GPUs:
- MI300X
- MI325X
- Upcoming MI350 (2026)
- ROCm 6.0 (CUDA competitor)
Why AMD matters:
-
Major cloud providers are integrating MI300X:
- AWS (partial)
- Azure (pilot deployment)
- Oracle Cloud (growing adoption)
- AMD enables lower training and inference cost
- Strong alternative for enterprises sensitive to GPU pricing
But AMD is not yet part of the bubble:
Training major models still uses NVIDIA, because:
- CUDA is still dominant
- ROCm ecosystem is young
- AI labs have not migrated
AMD = Bubble Challenger, not Bubble Driver (yet).
🟦 Updated AI Bubble Ecosystem Map (Including AMD)
AI Labs
(OpenAI, Anthropic, xAI, Meta, Cohere)
▲
│ Needs massive compute
│
┌───────────────┴───────────────┐
│ Cloud Providers │
│ (Microsoft, AWS, Oracle, GCP) │
└───────────────▲───────────────┘
│ Buy GPUs at scale
│
┌─────────────────────┴─────────────────────┐
│ NVIDIA │
│ (AI Bubble Center, CUDA moat) │
└─────────────────────┬─────────────────────┘
│
┌──────────────────┴──────────────────┐
│ AMD │
│ (Challenger, MI300X ecosystem) │
└──────────────────────────────────────┘
⭐ Summary: Who is Driving the AI Bubble?
🟦 Bubble Center
- NVIDIA
🟧 Bubble Drivers
- Microsoft
- Amazon
- Meta
- Oracle
- Tesla / xAI
- Anthropic
🟥 Bubble Engines
- OpenAI
- Anthropic
- xAI
🟩 Not in Bubble Loop
- Google (TPU strategy)
- Apple (local AI, minimal GPU usage)
🟪 Bubble Followers / Challengers
- AMD ← important new player
- Intel
- Groq
- Cerebras
- SambaNova
- CoreWeave / Lambda Labs
📌 Final Thoughts
The AI bubble is not simply about “AI hype”.
It is specifically about GPU demand, compute inflation, and AI training scale.
NVIDIA dominates today, but AMD is finally entering the game.
If AMD’s MI300X + ROCm ecosystem catches up, the market may shift from:
- Single-supplier monopoly → dual-supplier competition
This could:
- Lower training costs
- Slow down NVIDIA’s valuation explosion
- Reshape cloud AI strategies
The next 12–24 months will decide whether AMD becomes a true AI giant or remains a challenger.
Get in Touch with us
Related Posts
- AI会在2026年取代软件开发公司吗?企业管理层必须知道的真相
- Will AI Replace Software Development Agencies in 2026? The Brutal Truth for Enterprise Leaders
- 使用开源 + AI 构建企业级系统(2026 实战指南)
- How to Build an Enterprise System Using Open-Source + AI (2026 Practical Guide)
- AI赋能的软件开发 —— 为业务而生,而不仅仅是写代码
- AI-Powered Software Development — Built for Business, Not Just Code
- Agentic Commerce:自主化采购系统的未来(2026 年完整指南)
- Agentic Commerce: The Future of Autonomous Buying Systems (Complete 2026 Guide)
- 如何在现代 SOC 中构建 Automated Decision Logic(基于 Shuffle + SOC Integrator)
- How to Build Automated Decision Logic in a Modern SOC (Using Shuffle + SOC Integrator)
- 为什么我们选择设计 SOC Integrator,而不是直接进行 Tool-to-Tool 集成
- Why We Designed a SOC Integrator Instead of Direct Tool-to-Tool Connections
- 基于 OCPP 1.6 的 EV 充电平台构建 面向仪表盘、API 与真实充电桩的实战演示指南
- Building an OCPP 1.6 Charging Platform A Practical Demo Guide for API, Dashboard, and Real EV Stations
- 软件开发技能的演进(2026)
- Skill Evolution in Software Development (2026)
- Retro Tech Revival:从经典思想到可落地的产品创意
- Retro Tech Revival: From Nostalgia to Real Product Ideas
- SmartFarm Lite — 简单易用的离线农场记录应用
- OffGridOps — 面向真实现场的离线作业管理应用













