The Real AI Bubble: How NVIDIA, Microsoft, OpenAI, Google, Oracle — and Now AMD — Shape the Future of Compute
The global AI boom is driven by unprecedented demand for computing power. But beneath the hype lies a complex ecosystem of tech giants, GPU suppliers, AI labs, and cloud providers, all feeding into a feedback loop that many analysts now describe as an AI bubble.
In this post, we map the entire system — including AMD, which has recently entered the spotlight as the strongest challenger to NVIDIA’s dominance.
🌐 1. The Core AI Bubble Loop (2023–2025)
The modern AI race is powered by a simple but explosive feedback cycle:
AI Labs → Need More Compute → Cloud Providers Buy GPUs → NVIDIA Supplies GPUs →
NVIDIA Valuation Rises → AI Labs Raise More Money → Repeat
This loop has created the largest technology capex boom in history.
The Loop Components:
- AI Labs: OpenAI, Anthropic, xAI, Meta
- Cloud Providers: Microsoft Azure, AWS, Google Cloud, Oracle Cloud
- GPU Supplier: NVIDIA
- Bubble Catalyst: Increasing model size and compute demand
Every new model (GPT-4 → GPT-5 → GPT-next) multiplies compute demand by 2–10×, pushing the bubble further.
🟦 2. NVIDIA: The Center of the AI Bubble
NVIDIA sits at the heart of the boom. It supplies:
- H100
- H200
- B100
- GB200
- And the CUDA ecosystem (the true moat)
NVIDIA enjoys:
- ~95% market share in AI accelerators
- Record-breaking margins
- Unmatched demand backlog
- Dependency from every frontier AI lab
NVIDIA = Bubble King.
🟧 3. Microsoft: The Bubble Amplifier
Microsoft amplified the bubble by:
- Investing >$13B into OpenAI
- Running nearly all OpenAI workloads on Azure
- Buying massive GPU inventory from NVIDIA
- Building “AI factories” worldwide
- Launching its own Maia AI chips
Microsoft is both driver and beneficiary of the cycle.
🔵 4. OpenAI: The Bubble Engine
OpenAI ignites the cycle by demanding:
- Larger GPU clusters
- Faster interconnects
- More global compute
Training GPT-4 and GPT-5 requires tens of thousands of NVIDIA GPUs, pushing cloud and hardware demand into extreme territory.
🟩 5. Google: The Vertical Integrator (Not in the Bubble Loop)
Google is a major AI player but does not participate in the NVIDIA bubble.
Why?
It built an independent stack:
- TPU chips (v4, v5e, v6e)
- Google DeepMind research
- Gemini model family
- Google-owned datacenters
Google buys far fewer NVIDIA GPUs, avoiding the boom-bust cycle.
Google is an AI leader, but not a bubble driver.
🟥 6. Oracle: The Unexpected Winner
Oracle Cloud (OCI) became an AI boom winner because:
- It offered cheaper GPU clusters
- It partnered with xAI, Cohere, Adept
- It aggressively bought thousands of H100 GPUs
Oracle moved from legacy database company → AI infrastructure powerhouse.
🟪 7. AMD: The Bubble Challenger
Now we add AMD, the company everyone is watching.
💥 AMD is the only realistic challenger to NVIDIA’s monopoly.
Recent AMD AI GPUs:
- MI300X
- MI325X
- Upcoming MI350 (2026)
- ROCm 6.0 (CUDA competitor)
Why AMD matters:
-
Major cloud providers are integrating MI300X:
- AWS (partial)
- Azure (pilot deployment)
- Oracle Cloud (growing adoption)
- AMD enables lower training and inference cost
- Strong alternative for enterprises sensitive to GPU pricing
But AMD is not yet part of the bubble:
Training major models still uses NVIDIA, because:
- CUDA is still dominant
- ROCm ecosystem is young
- AI labs have not migrated
AMD = Bubble Challenger, not Bubble Driver (yet).
🟦 Updated AI Bubble Ecosystem Map (Including AMD)
AI Labs
(OpenAI, Anthropic, xAI, Meta, Cohere)
▲
│ Needs massive compute
│
┌───────────────┴───────────────┐
│ Cloud Providers │
│ (Microsoft, AWS, Oracle, GCP) │
└───────────────▲───────────────┘
│ Buy GPUs at scale
│
┌─────────────────────┴─────────────────────┐
│ NVIDIA │
│ (AI Bubble Center, CUDA moat) │
└─────────────────────┬─────────────────────┘
│
┌──────────────────┴──────────────────┐
│ AMD │
│ (Challenger, MI300X ecosystem) │
└──────────────────────────────────────┘
⭐ Summary: Who is Driving the AI Bubble?
🟦 Bubble Center
- NVIDIA
🟧 Bubble Drivers
- Microsoft
- Amazon
- Meta
- Oracle
- Tesla / xAI
- Anthropic
🟥 Bubble Engines
- OpenAI
- Anthropic
- xAI
🟩 Not in Bubble Loop
- Google (TPU strategy)
- Apple (local AI, minimal GPU usage)
🟪 Bubble Followers / Challengers
- AMD ← important new player
- Intel
- Groq
- Cerebras
- SambaNova
- CoreWeave / Lambda Labs
📌 Final Thoughts
The AI bubble is not simply about “AI hype”.
It is specifically about GPU demand, compute inflation, and AI training scale.
NVIDIA dominates today, but AMD is finally entering the game.
If AMD’s MI300X + ROCm ecosystem catches up, the market may shift from:
- Single-supplier monopoly → dual-supplier competition
This could:
- Lower training costs
- Slow down NVIDIA’s valuation explosion
- Reshape cloud AI strategies
The next 12–24 months will decide whether AMD becomes a true AI giant or remains a challenger.
Get in Touch with us
Related Posts
- 边缘计算中的计算机视觉:低算力环境下的挑战与中国市场的新机遇
- Computer Vision in Edge Devices & Low-Resource Environments: Challenges & Opportunities
- Simplico —— 面向中国市场的企业级 AI 自动化与定制软件解决方案
- Simplico — AI Automation & Custom Software Solutions
- 中国版:基于 AI 的预测性维护——从传感器到预测模型的完整解析
- AI for Predictive Maintenance: From Sensors to Prediction Models
- 会计行业中的 AI 助手——能做什么,不能做什么
- AI Assistants for Accountants: What They Can and Cannot Do
- 为什么中小企业在 ERP 定制上花费过高?— 深度解析与解决方案
- Why SMEs Overpay for ERP Customization — And How to Prevent It
- 为什么我们打造 SimpliShop —— 为中国企业提供可扩展、可集成、可定制的电商系统
- Why SimpliShop Was Built — And How It Helps Businesses Grow Faster Worldwide
- Fine-Tuning 与 Prompt Engineering 有什么区别? —— 给中国企业的 AI 应用实战指南
- Fine-Tuning vs Prompt Engineering Explained
- 精准灌溉(Precision Irrigation)入门
- Introduction to Precision Irrigation
- 物联网传感器并不是智慧农业的核心——真正的挑战是“数据整合
- IoT Sensors Are Overrated — Data Integration Is the Real Challenge
- React / React Native 移动应用开发服务提案书(面向中国市场)
- Mobile App Development Using React & React Native













