Simulating Border Conflict and Proxy War
A Systems Approach Using Agent-Based, Network, and System Dynamics Models
Modern border conflicts rarely resemble conventional wars.
They are persistent, indirect, and system-driven, involving multiple actors, informal resource flows, and adaptive behaviors rather than open military confrontation.
Conflicts similar to those seen in parts of Southeast Asia—and many other regions globally—are best understood not as isolated incidents, but as complex systems.
This article explains which simulation approaches are most suitable for modeling border tensions, proxy dynamics, and indirect conflict—without focusing on tactical or military detail.
1. From Incidents to Systems
Traditional analysis often asks:
“Who won the clash?”
Systems-oriented simulation asks instead:
“Why does tension persist—or gradually decline—over time?”
In this view, border incidents are outputs of an underlying system, not root causes.
Conceptual Model
Tension (T)
= f(Resources, Decisions, Legitimacy, Cooperation)
A simple directional form:
T = αR + βA − γL − δC
Where:
- R (Resources): funding, logistics, informal support
- A (Actions): decisions made by actors on the ground
- L (Legitimacy): perceived authority and public trust
- C (Cooperation): cross-border and institutional coordination
High resources and aggressive actions, combined with low legitimacy and cooperation, naturally increase tension—without requiring escalation orders.
2. Agent-Based Simulation: Modeling Adaptive Actors
Agent-Based Simulation (ABS) models each participant as an autonomous decision-maker rather than a scripted unit.
Typical agents include:
- State institutions
- Proxy or non-state groups
- Intermediaries and facilitators
- Local communities
- Enforcement bodies
Diagram: Agent-Based Perspective
graph TD
State["State Institutions"]
Proxy["Proxy / Non-State Actors"]
Broker["Intermediaries"]
Community["Local Communities"]
Enforcement["Law Enforcement"]
State --> Enforcement
Enforcement --> Broker
Broker --> Proxy
Proxy --> Community
Community --> State
Decision Logic (Intuitive Form)
Decision = Benefit − Risk − Cost
If perceived benefits outweigh risk and cost, behavior continues—even under pressure.
This explains why proxy dynamics tend to adapt rather than disappear.
3. Network Simulation: The Core of Indirect Conflict
Proxy conflicts are sustained through networks, not formations.
What matters most is not weaponry, but resource flow efficiency.
Diagram: Resource Flow Network
flowchart LR
Funding["Informal Funding Sources"]
Broker["Intermediaries"]
Routes["Logistics Routes"]
Capacity["Operational Capacity"]
Interdiction["State Interdiction"]
Funding --> Broker
Broker --> Routes
Routes --> Capacity
Interdiction -. disruption .-> Routes
Capability Flow Model
K = M × E × (1 − I)
Where:
- M (Money): available funding
- E (Efficiency): network adaptability
- I (Interdiction rate): disruption effectiveness
Increasing interdiction alone is insufficient if networks rapidly adapt and reroute.
4. System Dynamics: Understanding Long-Term Policy Effects
System Dynamics captures feedback loops that unfold over months or years.
Diagram: Feedback Loop
graph LR
Enforcement["Enforcement Pressure ↑"]
Cost["Network Cost ↑"]
Profit["Potential Returns ↑"]
Incentive["Incentives ↑"]
Adaptation["Adaptation ↑"]
Enforcement --> Cost
Cost --> Profit
Profit --> Incentive
Incentive --> Adaptation
Adaptation --> Enforcement
A simplified stock-flow relationship:
ΔResources / Δt = Revenue − Losses
If revenue growth outpaces enforcement losses, the system stabilizes rather than collapses.
5. Border Incidents as System Outputs
In this framework, border incidents are emergent outcomes, not direct control variables.
Incident Rate
= f(Network Capacity, Agent Decisions, Local Context)
This implies:
- Tactical escalation does not guarantee fewer incidents
- Structural interventions often have more durable effects
6. Practical Applications
This simulation approach is well suited for:
- Policy testing before real-world implementation
- Evaluating cross-border cooperation scenarios
- Risk assessment without operational escalation
- Supporting evidence-based decision-making
It is not a war-planning tool, but a conflict management and prevention framework.
Conclusion
Modern border conflicts and proxy wars are not driven by battlefield superiority alone.
They emerge from interacting systems of incentives, networks, and legitimacy.
By combining:
- Agent-Based Simulation
- Network Modeling
- System Dynamics
decision-makers can shift from reactive responses to structural understanding.
In an era of indirect conflict, systems thinking is strategic thinking.
Get in Touch with us
Related Posts
- RPA + AI: 为什么没有“智能”的自动化一定失败, 而没有“治理”的智能同样不可落地
- RPA + AI: Why Automation Fails Without Intelligence — and Intelligence Fails Without Control
- 先解决“检索与访问”问题 重塑高校图书馆战略价值的最快路径
- Fix Discovery & Access First: The Fastest Way to Restore the University Library’s Strategic Value
- 我们正在开发一个连接工厂与再生资源企业的废料交易平台
- We’re Building a Better Way for Factories and Recyclers to Trade Scrap
- 如何使用 Python 开发 MES(制造执行系统) —— 面向中国制造企业的实用指南
- How to Develop a Manufacturing Execution System (MES) with Python
- MES、ERP 与 SCADA 的区别与边界 —— 制造业系统角色与连接关系详解
- MES vs ERP vs SCADA: Roles and Boundaries Explained
- 为什么学习软件开发如此“痛苦” ——以及真正有效的解决方法
- Why Learning Software Development Feels So Painful — and How to Fix It
- 企业最终会选择哪种 AI:GPT 风格,还是 Gemini 风格?
- What Enterprises Will Choose: GPT-Style AI or Gemini-Style AI?
- GPT-5.2 在哪些真实业务场景中明显优于 GPT-5.1
- Top Real-World Use Cases Where GPT-5.2 Shines Over GPT-5.1
- ChatGPT 5.2 与 5.1 的区别 —— 用通俗类比来理解
- ChatGPT 5.2 vs 5.1 — Explained with Simple Analogies
- 为什么成长型企业 最终会“用不下去”通用软件 —— 成功企业是如何应对的
- Why Growing Businesses Eventually Outgrow Off-the-Shelf Software (And What Successful Companies Do Instead)













