Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
I’ve been experimenting with an idea:
An AI-powered product curator that helps you discover high-potential products before they go viral.
This post is part of my experiment.
If enough people show interest, I’ll turn it into a real tool.
💡 The Problem
If you sell online, you’ve probably asked:
“What should I sell next?”
“Will this product actually take off?”
Most product tools show what’s already trending.
By then, the opportunity is often gone.
What we need is something smarter—something that predicts what people will want next, before the market floods.
🚀 The Idea: AI Product Curator
I’m building a prototype that uses AI to:
- Scan product data (from marketplaces, social media, etc.)
- Analyze emotional appeal and descriptions
- Predict which products will trend soon
- Group similar products into niche clusters
Imagine a 24/7 virtual product scout that shows you what to test, stock, or market—based on real signals.
🧠 How It Works (So Far)
- TF-IDF + NLP → understands product descriptions
- Trend signals → popularity score, price, emotional tone
- Logistic regression → predicts whether it will trend
- KMeans clustering → groups products into themes
You get a simple shortlist:
- ✅ “Test this”
- 💤 “Skip this”
- 🧠 “This category is heating up”
🗺 System Workflow (Mermaid.js)
graph TD
A["Start: Product Idea Testing"] --> B["Collect Product Data"]
B --> C["TF-IDF Vectorization of Descriptions"]
C --> D["Combine with Numerical Features (Price, Popularity)"]
D --> E["Train Logistic Regression Model"]
E --> F["Predict If Product is Likely to Trend"]
D --> G["Run KMeans Clustering"]
G --> H["Group Similar Products (Market Segments)"]
F --> I["Select High-Potential Products"]
H --> I
I --> J["Create Shortlist for Testing / Stocking"]
J --> K["Review or Automate Decisions"]
K --> L["Deploy to Live System or Dashboard"]
🧰 Tools I'm Using
- Python + Scikit-learn (ML & clustering)
- TF-IDF (text vectorization)
- Streamlit or dashboard for prototyping
- Next: Google Trends, TikTok insights, GPT copywriting
🙋♀️ Would You Use It?
This is just a prototype right now.
If enough people want it, I’ll build a beta version.
👉 Email me at hello@simplico.net
👉 Or add me on LINE: iiitum1984
Let me know if this kind of tool would help you test product ideas, stock the right inventory, or stay ahead of the trends.
Let’s see if it’s worth building.
Get in Touch with us
Related Posts
- Temporal × 本地大模型 × Robot Framework 面向中国企业的可靠业务自动化架构实践
- Building Reliable Office Automation with Temporal, Local LLMs, and Robot Framework
- RPA + AI: 为什么没有“智能”的自动化一定失败, 而没有“治理”的智能同样不可落地
- RPA + AI: Why Automation Fails Without Intelligence — and Intelligence Fails Without Control
- Simulating Border Conflict and Proxy War
- 先解决“检索与访问”问题 重塑高校图书馆战略价值的最快路径
- Fix Discovery & Access First: The Fastest Way to Restore the University Library’s Strategic Value
- 我们正在开发一个连接工厂与再生资源企业的废料交易平台
- We’re Building a Better Way for Factories and Recyclers to Trade Scrap
- 如何使用 Python 开发 MES(制造执行系统) —— 面向中国制造企业的实用指南
- How to Develop a Manufacturing Execution System (MES) with Python
- MES、ERP 与 SCADA 的区别与边界 —— 制造业系统角色与连接关系详解
- MES vs ERP vs SCADA: Roles and Boundaries Explained
- 为什么学习软件开发如此“痛苦” ——以及真正有效的解决方法
- Why Learning Software Development Feels So Painful — and How to Fix It
- 企业最终会选择哪种 AI:GPT 风格,还是 Gemini 风格?
- What Enterprises Will Choose: GPT-Style AI or Gemini-Style AI?
- GPT-5.2 在哪些真实业务场景中明显优于 GPT-5.1
- Top Real-World Use Cases Where GPT-5.2 Shines Over GPT-5.1
- ChatGPT 5.2 与 5.1 的区别 —— 用通俗类比来理解













