RasaとLangchain、どちらを選ぶべきか?チャットボット開発の選択基準
AIチャットボットの活用が急速に進む中、開発者にとって重要な問いがあります:
「Rasaを使うべきか?それともLangchainか?」
この2つのツールはどちらも非常に強力ですが、目的が大きく異なります。
この記事では、それぞれの強みを明確にし、どんな状況でどちらを選ぶべきかを解説します。
🔷 Rasaとは?
Rasaは、会話の流れを細かく制御できるオープンソースのチャットボットフレームワークです。
主な特徴:
- インテント(意図)やエンティティ(情報)の抽出
- 対話の状態管理(ステートトラッキング)
- フォーム機能によるデータ収集
- セルフホスティングによる高いセキュリティと柔軟性
📌 Rasaが得意なシナリオ:
- カスタマーサポート(注文状況の確認、返品受付)
- 予約管理
- FAQ対応
- 社内ヘルプデスク(IT/HR)
🔷 Langchainとは?
Langchainは、GPT-4などの大規模言語モデル(LLM)を中心に構築された「エージェント指向」フレームワークです。
主な特徴:
- LLMに質問し、自然な文章を生成
- ベクトルデータベースを活用したRAG(検索強化生成)
- 外部ツール(API、Python、Google検索など)との統合
- ドキュメントの要約・分析、コード生成なども可能
📌 Langchainが得意なシナリオ:
- 複雑な質問応答(例:PDFマニュアルから答えを抽出)
- 長文コンテンツの要約や分析
- プログラミング補助(コード生成や修正提案)
- 多段階の推論やツール利用を伴う会話
⚖️ Rasa vs Langchain:比較表
| 項目 | Rasa | Langchain |
|---|---|---|
| 主な用途 | ワークフロー型チャットボット | LLMベースの知的エージェント |
| 会話の流れ | ルールと状態追跡で正確に制御 | 柔軟な生成(ただし一貫性の制御は難しい) |
| メモリ・文脈保持 | Trackerによる会話履歴管理 | チャット履歴+ベクトルストア(長期記憶) |
| 学習の必要性 | 意図/エンティティのトレーニングが必要 | プロンプト設計のみ。モデルに学習データは不要 |
| ホスティング | 完全なセルフホスティングが可能 | 多くの場合LLM API(外部依存) |
| 多言語対応 | 独自のパイプラインで多言語対応 | LLMが多言語を自然に処理 |
| 典型的な導入事例 | サポートチャットボット、予約管理、社内システム | ナレッジ検索ボット、法務アシスタント、コード補助など |
✅ Rasaを選ぶべきケース
- 明確な会話の流れ(ワークフロー)が必要な場合
- 意図やスロットに基づいた処理をしたい
- データセキュリティを重視(オンプレミス運用)
- 多言語・複雑な業務フローを安定して処理
📌 例:
顧客が注文状況を確認 → Rasaが注文番号を取得 → データベース照会 → 状況を返す
✅ Langchainを選ぶべきケース
- ドキュメントやナレッジから柔軟に答えるボットが必要
- 複雑な問い合わせ(例:「この契約書のリスクをまとめて」)に対応
- LLMにコードを書かせたい、要約させたい、複雑な推論をさせたい
📌 例:
顧客が「この製品マニュアルを要約して」と言う → LangchainがPDFを読んで要約を返す
🔁 RasaとLangchainを連携するハイブリッド構成も可能
- Rasaで意図・流れを管理し、特定のIntentでLangchainを呼び出す
- たとえば:「マニュアルを要約して」IntentでLangchainに処理を任せる
📌 この構成は、制御された会話 + 高度なAIの知能処理が必要なプロジェクトに最適です。
🧩 まとめ:どちらを選ぶべき?
| 条件 | 推奨ツール |
|---|---|
| 明確な手続き型チャットボットが必要 | ✅ Rasa |
| 自由な知識検索や要約・推論が必要 | ✅ Langchain |
| 両方の長所を活かしたい | ✅ Rasa + Langchain |
📘 次のステップ
- ユーザーのニーズを明確にする
- 会話のパターンを設計する(固定型?柔軟型?)
- 必要に応じてハイブリッド構成を検討
Get in Touch with us
Related Posts
- Temporal × ローカルLLM × Robot Framework 日本企業向け「止まらない・壊れない」業務自動化アーキテクチャ
- RPA × AI: なぜ「自動化」は知能なしでは破綻し、 知能は制御なしでは信頼されないのか
- 国境紛争・代理戦争をどうシミュレーションするか
- 検索とアクセスを最初に改善する 大学図書館の戦略的価値を最短で回復する方法
- 工場とリサイクル事業者をつなぐ、新しいスクラップ取引プラットフォームを開発しています
- Python で MES(製造実行システム)を開発する方法 ― 日本の製造現場に適した実践ガイド ―
- MES・ERP・SCADA の違いとは? ― 製造業における役割と境界を分かりやすく解説
- なぜソフトウェア開発の学習はこんなにも「つらい」のか ― そして、その解決方法
- 企業はどちらを選ぶのか:GPT型AIか、Gemini型AIか
- GPT-5.2 が GPT-5.1 より真価を発揮する実務ユースケース
- ChatGPT 5.2 と 5.1 の違い ― たとえ話でわかりやすく解説
- なぜ成長する企業は 既製ソフトウェアでは限界を迎えるのか ― 成功している企業が選ぶ次の一手 ―
- コンピュータビジョンのエッジ化と低リソース環境:日本企業における課題と新たな機会*
- Simplico — 企業向けAIオートメーション & カスタムソフトウェア開発(日本市場向け)
- AIによる予知保全 ― センサーから予測モデルまでの全体像
- 会計業務におけるAIアシスタント ― できること・できないこと
- なぜ中小企業はERPカスタマイズに過剰なコストを支払ってしまうのか — そしてその防ぎ方
- なぜ SimpliShop を開発したのか —— 日本の中小企業の成長を支えるための新しい EC プラットフォーム
- ファインチューニング vs プロンプトエンジニアリングを徹底解説 ― 日本企業がAIを活用するための実践ガイド ―
- 精密灌漑(Precision Irrigation)入門













