Design Patterns That Help Tame Legacy Code (With Python Examples)
Working with legacy code can feel like walking through a minefield. You know something might break, but you’re not sure when—or why. The good news is that design patterns can help.
In this post, I’ll share a few key design patterns that make working with legacy systems safer, cleaner, and more maintainable—using Python code examples.
🧩 1. The Adapter Pattern
Problem: Legacy code doesn't match the interface your modern code expects.
Solution: Wrap the old code in a new interface.
Example:
Let’s say you have a legacy payment gateway:
# legacy_system.py
class LegacyPaymentProcessor:
def make_payment(self, amount):
print(f"[Legacy] Processing payment of ${amount}")
Now, you want to use a modern interface:
# adapter.py
class PaymentInterface:
def pay(self, amount):
raise NotImplementedError
class LegacyAdapter(PaymentInterface):
def __init__(self, legacy_processor):
self.legacy_processor = legacy_processor
def pay(self, amount):
return self.legacy_processor.make_payment(amount)
Usage:
from legacy_system import LegacyPaymentProcessor
from adapter import LegacyAdapter
adapter = LegacyAdapter(LegacyPaymentProcessor())
adapter.pay(100)
✅ You can now use LegacyPaymentProcessor
anywhere PaymentInterface
is expected.
🏗️ 2. The Facade Pattern
Problem: Legacy subsystems are complex and hard to use.
Solution: Provide a simplified interface to a larger body of code.
Example:
# legacy_subsystem.py
class LegacyAuth:
def check_user(self, username, password):
return username == "admin" and password == "1234"
class LegacyLogger:
def log(self, msg):
print(f"[LOG]: {msg}")
Facade:
class AuthFacade:
def __init__(self):
self.auth = LegacyAuth()
self.logger = LegacyLogger()
def login(self, username, password):
if self.auth.check_user(username, password):
self.logger.log(f"{username} logged in.")
return True
self.logger.log("Invalid login attempt.")
return False
✅ Consumers don’t need to deal with the legacy details.
🧪 3. The Decorator Pattern
Problem: You want to add features without changing legacy code.
Solution: Wrap the legacy object to extend behavior dynamically.
Example:
class LegacyReporter:
def report(self):
print("Generating basic report...")
class TimestampedReporter:
def __init__(self, wrapped):
self.wrapped = wrapped
def report(self):
from datetime import datetime
print(f"Report generated at: {datetime.now()}")
self.wrapped.report()
Usage:
reporter = TimestampedReporter(LegacyReporter())
reporter.report()
✅ Legacy functionality extended without touching the original class.
🧰 4. The Strategy Pattern
Problem: You want to change algorithms used by legacy code without modifying it.
Solution: Inject behavior at runtime.
Example:
class LegacySorter:
def sort(self, data):
return sorted(data) # default
# New strategy
class ReverseSortStrategy:
def sort(self, data):
return sorted(data, reverse=True)
# Updated to accept strategy
class SorterContext:
def __init__(self, strategy):
self.strategy = strategy
def sort(self, data):
return self.strategy.sort(data)
Usage:
sorter = SorterContext(ReverseSortStrategy())
print(sorter.sort([5, 1, 4, 2]))
✅ Clean separation of algorithms for flexible extension.
🚦 5. The Proxy Pattern
Problem: You need to add access control, caching, or logging to legacy classes.
Solution: Create a stand-in object that controls access to the real one.
Example:
class LegacyDatabase:
def query(self, sql):
print(f"Executing SQL: {sql}")
return f"Results for: {sql}"
class LoggingProxy:
def __init__(self, db):
self.db = db
def query(self, sql):
print(f"[LOG] About to query: {sql}")
return self.db.query(sql)
✅ Seamless control over legacy components.
✨ Wrapping Up
Design patterns are not just academic tools—they’re powerful allies when refactoring or integrating legacy code. With Python’s dynamic capabilities, implementing these patterns becomes even more fluid and expressive.
When working with legacy systems, remember:
- Wrap, don’t rewrite (yet).
- Isolate risky code behind interfaces.
- Test as you refactor.
- Make your intentions clear with patterns.
Get in Touch with us
Related Posts
- How to Use Embedding Models with LLMs for Smarter AI Applications
- Smart Vision System for Continuous Material Defect Detection
- Building a Real-Time Defect Detector with Line-Scan + ML (Reusable Playbook)
- How to Read Source Code: Frappe Framework Sample
- Interface-Oriented Design: The Foundation of Clean Architecture
- Understanding Anti-Drone Systems: Architecture, Hardware, and Software
- RTOS vs Linux in Drone Systems: Modern Design, Security, and Rust for Next-Gen Drones
- Why Does Spring Use So Many Annotations? Java vs. Python Web Development Explained
- From Django to Spring Boot: A Practical, Visual Guide for Web Developers
- How to Build Large, Maintainable Python Systems with Clean Architecture: Concepts & Real-World Examples
- Why Test-Driven Development Makes Better Business Sense
- Continuous Delivery for Django on DigitalOcean with GitHub Actions & Docker
- Build a Local Product Recommendation System with LangChain, Ollama, and Open-Source Embeddings
- 2025 Guide: Comparing the Top Mobile App Frameworks (Flutter, React Native, Expo, Ionic, and More)
- Understanding `np.meshgrid()` in NumPy: Why It’s Needed and What Happens When You Swap It
- How to Use PyMeasure for Automated Instrument Control and Lab Experiments
- Supercharge Your Chatbot: Custom API Integration Services for Your Business
- How to Guess an Equation Without Math: Exploring Cat vs. Bird Populations
- How to Build an AI-Resistant Project: Ideas That Thrive on Human Interaction
- Build Your Own Cybersecurity Lab with GNS3 + Wazuh + Docker: Train, Detect, and Defend in One Platform