Design Patterns That Help Tame Legacy Code (With Python Examples)
Working with legacy code can feel like walking through a minefield. You know something might break, but you’re not sure when—or why. The good news is that design patterns can help.
In this post, I’ll share a few key design patterns that make working with legacy systems safer, cleaner, and more maintainable—using Python code examples.
🧩 1. The Adapter Pattern
Problem: Legacy code doesn’t match the interface your modern code expects.
Solution: Wrap the old code in a new interface.
Example:
Let’s say you have a legacy payment gateway:
# legacy_system.py
class LegacyPaymentProcessor:
def make_payment(self, amount):
print(f"[Legacy] Processing payment of ${amount}")
Now, you want to use a modern interface:
# adapter.py
class PaymentInterface:
def pay(self, amount):
raise NotImplementedError
class LegacyAdapter(PaymentInterface):
def __init__(self, legacy_processor):
self.legacy_processor = legacy_processor
def pay(self, amount):
return self.legacy_processor.make_payment(amount)
Usage:
from legacy_system import LegacyPaymentProcessor
from adapter import LegacyAdapter
adapter = LegacyAdapter(LegacyPaymentProcessor())
adapter.pay(100)
✅ You can now use LegacyPaymentProcessor anywhere PaymentInterface is expected.
🏗️ 2. The Facade Pattern
Problem: Legacy subsystems are complex and hard to use.
Solution: Provide a simplified interface to a larger body of code.
Example:
# legacy_subsystem.py
class LegacyAuth:
def check_user(self, username, password):
return username == "admin" and password == "1234"
class LegacyLogger:
def log(self, msg):
print(f"[LOG]: {msg}")
Facade:
class AuthFacade:
def __init__(self):
self.auth = LegacyAuth()
self.logger = LegacyLogger()
def login(self, username, password):
if self.auth.check_user(username, password):
self.logger.log(f"{username} logged in.")
return True
self.logger.log("Invalid login attempt.")
return False
✅ Consumers don’t need to deal with the legacy details.
🧪 3. The Decorator Pattern
Problem: You want to add features without changing legacy code.
Solution: Wrap the legacy object to extend behavior dynamically.
Example:
class LegacyReporter:
def report(self):
print("Generating basic report...")
class TimestampedReporter:
def __init__(self, wrapped):
self.wrapped = wrapped
def report(self):
from datetime import datetime
print(f"Report generated at: {datetime.now()}")
self.wrapped.report()
Usage:
reporter = TimestampedReporter(LegacyReporter())
reporter.report()
✅ Legacy functionality extended without touching the original class.
🧰 4. The Strategy Pattern
Problem: You want to change algorithms used by legacy code without modifying it.
Solution: Inject behavior at runtime.
Example:
class LegacySorter:
def sort(self, data):
return sorted(data) # default
# New strategy
class ReverseSortStrategy:
def sort(self, data):
return sorted(data, reverse=True)
# Updated to accept strategy
class SorterContext:
def __init__(self, strategy):
self.strategy = strategy
def sort(self, data):
return self.strategy.sort(data)
Usage:
sorter = SorterContext(ReverseSortStrategy())
print(sorter.sort([5, 1, 4, 2]))
✅ Clean separation of algorithms for flexible extension.
🚦 5. The Proxy Pattern
Problem: You need to add access control, caching, or logging to legacy classes.
Solution: Create a stand-in object that controls access to the real one.
Example:
class LegacyDatabase:
def query(self, sql):
print(f"Executing SQL: {sql}")
return f"Results for: {sql}"
class LoggingProxy:
def __init__(self, db):
self.db = db
def query(self, sql):
print(f"[LOG] About to query: {sql}")
return self.db.query(sql)
✅ Seamless control over legacy components.
✨ Wrapping Up
Design patterns are not just academic tools—they’re powerful allies when refactoring or integrating legacy code. With Python’s dynamic capabilities, implementing these patterns becomes even more fluid and expressive.
When working with legacy systems, remember:
- Wrap, don’t rewrite (yet).
- Isolate risky code behind interfaces.
- Test as you refactor.
- Make your intentions clear with patterns.
Get in Touch with us
Related Posts
- AI会在2026年取代软件开发公司吗?企业管理层必须知道的真相
- Will AI Replace Software Development Agencies in 2026? The Brutal Truth for Enterprise Leaders
- 使用开源 + AI 构建企业级系统(2026 实战指南)
- How to Build an Enterprise System Using Open-Source + AI (2026 Practical Guide)
- AI赋能的软件开发 —— 为业务而生,而不仅仅是写代码
- AI-Powered Software Development — Built for Business, Not Just Code
- Agentic Commerce:自主化采购系统的未来(2026 年完整指南)
- Agentic Commerce: The Future of Autonomous Buying Systems (Complete 2026 Guide)
- 如何在现代 SOC 中构建 Automated Decision Logic(基于 Shuffle + SOC Integrator)
- How to Build Automated Decision Logic in a Modern SOC (Using Shuffle + SOC Integrator)
- 为什么我们选择设计 SOC Integrator,而不是直接进行 Tool-to-Tool 集成
- Why We Designed a SOC Integrator Instead of Direct Tool-to-Tool Connections
- 基于 OCPP 1.6 的 EV 充电平台构建 面向仪表盘、API 与真实充电桩的实战演示指南
- Building an OCPP 1.6 Charging Platform A Practical Demo Guide for API, Dashboard, and Real EV Stations
- 软件开发技能的演进(2026)
- Skill Evolution in Software Development (2026)
- Retro Tech Revival:从经典思想到可落地的产品创意
- Retro Tech Revival: From Nostalgia to Real Product Ideas
- SmartFarm Lite — 简单易用的离线农场记录应用
- OffGridOps — 面向真实现场的离线作业管理应用













