Beginner’s Guide: How EV Charging Apps Communicate, Track Charging, and Calculate Costs
Electric Vehicles (EVs) are the future — and smart, user-friendly charging apps are a big part of the EV experience. If you're building an EV charging solution with a Flask backend, this guide is for you.
We'll walk through:
- How your mobile app talks to the backend and the EVSE (Charger)
- How energy usage is tracked and billed
- How to enable SOC (State of Charge) reporting
- Code examples using Flask and OCPP
- A clear and complete technical overview — for beginners
🧩 The 4 Main Components of an EV Charging System
Component | Role |
---|---|
Mobile App | Used by EV drivers to find, start, and stop charging sessions |
Flask Backend | Your server that talks to the app and sends commands to chargers |
EVSE (Charger) | The physical station that delivers electricity to the vehicle |
OCPP Protocol | The language your backend uses to communicate with the charger |
🔄 Communication Flow (Simplified)
Even though it looks like the app talks to the charger directly, it doesn’t.
Here’s how it really works:
sequenceDiagram
participant User
participant App
participant Flask Backend
participant EVSE (Charger)
User->>App: Start Charging
App->>Flask Backend: POST /start_session
Flask Backend->>EVSE (Charger): OCPP RemoteStartTransaction
EVSE (Charger)-->>Flask Backend: MeterStart = 154200 Wh
Flask Backend-->>App: Charging session started
Note over EVSE (Charger): Charging in progress...
User->>App: Stop Charging
App->>Flask Backend: POST /stop_session
Flask Backend->>EVSE (Charger): OCPP RemoteStopTransaction
EVSE (Charger)-->>Flask Backend: MeterStop = 156700 Wh
Flask Backend-->>App: Energy used = 2.5 kWh
⚡ Charging Session Tracking: MeterStart
and MeterStop
Every EVSE (Charger) has a built-in energy meter. When charging starts and stops, it reports the energy readings:
Value | Meaning |
---|---|
MeterStart | Energy reading when session begins (Wh) |
MeterStop | Energy reading when session ends (Wh) |
Example:
MeterStart = 154200 Wh
MeterStop = 156700 Wh
Energy used = (156700 - 154200) / 1000 = 2.5 kWh
💰 How Cost is Calculated
To calculate cost, multiply the energy used by the rate per kWh.
Flask Example:
def calculate_cost(meter_start, meter_stop, rate_per_kwh=0.25):
energy_wh = meter_stop - meter_start
energy_kwh = energy_wh / 1000
return round(energy_kwh * rate_per_kwh, 2)
Sample Response:
{
"energy_kwh": 2.5,
"rate_per_kwh": 0.25,
"total_cost": 0.63
}
🔋 Bonus: Enable State of Charge (SOC) Reporting
SOC (State of Charge) is the percentage of the EV's battery during charging. Some chargers support it, but you may need to enable it manually.
✅ Step 1: Check if SOC is Supported
Using OCPP's GetConfiguration
command:
@app.route('/station/<cp_id>/check-soc', methods=['GET'])
def check_soc(cp_id):
ws = get_websocket(cp_id) # Your connection manager
request = call.GetConfigurationPayload(key=["MeterValuesSampledData"])
asyncio.run(ws.send(request))
response = asyncio.run(ws.receive())
for item in response.configuration_key:
if "StateOfCharge" in item.value:
return jsonify({"soc_supported": True})
return jsonify({"soc_supported": False})
✅ Step 2: Enable SOC if Not Enabled
Send a ChangeConfiguration
request:
@app.route('/station/<cp_id>/enable-soc', methods=['POST'])
def enable_soc(cp_id):
ws = get_websocket(cp_id)
request = call.ChangeConfigurationPayload(
key="MeterValuesSampledData",
value="StateOfCharge,Energy.Active.Import.Register"
)
asyncio.run(ws.send(request))
response = asyncio.run(ws.receive())
if response.status == "Accepted":
return jsonify({"status": "success", "message": "SOC enabled"})
return jsonify({"status": "failed", "message": "Change rejected"})
🧾 Example MeterValues
Response After Enabling SOC
{
"meterValue": [{
"timestamp": "2025-05-26T03:25:00Z",
"sampledValue": [
{"measurand": "Energy.Active.Import.Register", "value": "156300"},
{"measurand": "StateOfCharge", "value": "74"}
]
}]
}
You can show this in your app:
🔋 Battery: 74%
⚡ Energy Used: 2.1 kWh
💰 Cost: $0.53
📱 Final Output to the App (API Response)
{
"session_id": "sess_001",
"meter_start": 154200,
"meter_stop": 156700,
"energy_kwh": 2.5,
"rate_per_kwh": 0.25,
"total_cost": 0.63,
"soc": 74,
"start_time": "2025-05-26T03:14:00Z",
"end_time": "2025-05-26T03:54:00Z"
}
🧱 Recommended Backend Tech Stack
Layer | Suggested Technology |
---|---|
Web Framework | Flask |
Charger Protocol | OCPP 1.6 with Mobility House lib |
Database | PostgreSQL or MongoDB |
Mobile App Frontend | Flutter or React Native |
Payments | Stripe, PromptPay, or PayPal |
✅ Final Summary
With just a mobile app, Flask backend, and OCPP connection, you can build a smart EV charging platform that:
- Starts and stops charging sessions
- Tracks energy used with
MeterStart
andMeterStop
- Calculates billing
- Enables State of Charge (SOC) for battery insights
- Sends real-time updates to users
This system is modular, scalable, and beginner-friendly.
🚀 Ready to Build Your EV Charging Platform?
Whether you're just getting started or scaling a network of chargers, we can help you build and connect your EV ecosystem.
📬 Reach out at www.simplico.net
💬 Or message us for a free technical consultation!
Get in Touch with us
Related Posts
- How TAK Systems Are Transforming Border Security
- ChatGPT-4o vs GPT-4.1 vs GPT-4.5: Which Model Is Best for You?
- Can Clients Decrypt Server Data Without the Private Key? (Spoiler: No—and Here’s Why)
- Managing JWT Authentication Across Multiple Frameworks
- Building a Lightweight EXFO Tester Admin Panel with FastAPI and Alpine.js
- Monitoring Cisco Network Devices with Wazuh: A Complete Guide
- Using FastAPI to Bridge Mobile Apps with OCPP EV Charging Systems
- Simulating EMC/EMI Coupling on a Naval Top Deck Using MEEP and Python
- How the TAK System Works: A Complete Guide for Real-Time Situational Awareness
- Building an E-commerce Website & Mobile App with Smart AI Integration — The Modern Way
- Personalized Recommendations Are Here — Powered by Smart Analytics
- Rasa vs LangChain vs Rasa + LangChain: Which One is Right for Your Business Chatbot?
- Understanding Wazuh by Exploring the Open Source Projects Behind It
- How to Integrate App Authentication with an OCPP Central System
- Building an OCPP 1.6 Central System with Flask async, WebSockets, and MongoDB
- How AI Supercharges Accounting and Inventory in Odoo (with Dev Insights)
- Building a Fullstack E-commerce System with JavaScript
- Building Agentic AI with Python, Langchain, and Ollama for eCommerce & Factory Automation
- Diagnosing the Root Cause of P0420 with Python, OBD-II, and Live Sensor Data
- How to Apply The Mom Test to Validate Your Startup Idea the Right Way