การทำงานร่วมกับ AI ในการเขียนโค้ดอย่างถูกวิธี
🔹 บทนำ
ปัญญาประดิษฐ์ (AI) กำลังเปลี่ยนวิธีที่เราเขียนซอฟต์แวร์อย่างสิ้นเชิง ทุกวันนี้มีเครื่องมืออย่าง Codex, GitHub Copilot และปลั๊กอิน AI ใน Neovim/VSCode ที่สามารถช่วยเติมโค้ดอัตโนมัติ สร้างโครงร่างโปรเจ็กต์ หรืออธิบาย error message ที่ซับซ้อนได้
แต่สิ่งสำคัญคือ: AI ไม่ได้ถูกสร้างมาเพื่อแทนที่นักพัฒนา มันถูกสร้างมาเพื่อเป็นคู่หู หากใช้อย่างผิดวิธี อาจก่อให้เกิดโค้ดที่อ่านยาก ช่องโหว่ด้านความปลอดภัย หรือการพึ่งพาเครื่องมือมากเกินไป แต่หากใช้ให้ถูกทาง AI จะช่วยให้คุณ ทำงานได้เร็วขึ้น เรียนรู้ได้ไวขึ้น และยังคงควบคุมคุณภาพของงานได้เต็มที่
🔹 1. มอง AI เป็น “คู่หูโปรแกรมเมอร์” ไม่ใช่ “นักเขียนโค้ดอัตโนมัติ”
ลองจินตนาการว่าคุณมีนักพัฒนามือใหม่มานั่งข้าง ๆ คุณจะไม่โยนทั้งโปรเจ็กต์ให้เขาทำเองทั้งหมด แต่คุณจะให้คำแนะนำ ตรวจสอบ และใช้ผลงานของเขาเป็นพื้นฐานในการต่อยอด นั่นแหละคือวิธีที่ควรใช้ AI
- ✅ วิธีที่ถูกต้อง: ให้ AI ช่วยสร้างฟังก์ชันย่อย เขียน test case หรือเสนอแนวทางการ refactor แล้วคุณค่อยตรวจสอบและแก้ไข
- ❌ วิธีที่ผิด: ให้ AI เขียนโค้ดยาวเป็นร้อยบรรทัดแล้ว commit เข้า production โดยไม่ตรวจสอบ
ตัวอย่าง: แทนที่จะสั่งว่า “เขียนแอป e-commerce ด้วย Django ให้ครบ”
ควรสั่งว่า:
“สร้าง Django model สำหรับ
Orderที่มีฟิลด์ status, payment method, timestamp และเชื่อมโยงกับUser”
🔹 2. ทำงานเป็นขั้นตอนเล็ก ๆ แบบ Iterative
การสั่งให้ AI เขียนโค้ดขนาดใหญ่ในครั้งเดียว มักจะได้โค้ดที่ไม่สมบูรณ์หรือใช้ไม่ได้จริง วิธีที่ดีกว่าคือแบ่งงานเป็นขั้นตอนย่อย ๆ ที่สามารถตรวจสอบได้ง่าย
- ✅ สร้างฟังก์ชัน → เพิ่ม validation → เขียน test → ใส่ document
- ❌ ให้ AI เขียน service layer ทั้งหมดในครั้งเดียว
การทำงานแบบนี้คล้ายกับ Agile Development คือทำเป็นรอบสั้น ๆ ตรวจสอบบ่อย ๆ และปรับปรุงเรื่อย ๆ ซึ่งทำให้คุณยังคงควบคุมทิศทางของโค้ดได้เต็มที่
🔹 3. คุมมาตรฐานและสไตล์การเขียนโค้ด
AI มักจะเขียนโค้ดตามรูปแบบที่มันเรียนรู้มา ซึ่งอาจไม่ตรงกับมาตรฐานของโปรเจ็กต์คุณ ถ้าไม่กำหนดไว้ คุณอาจได้โค้ดที่ปนกันทั้งหลายสไตล์
- ใส่คำสั่งใน prompt เช่น:
“เขียนโค้ดตาม PEP8”, “ใส่ type hints”, “ใช้ async/await” - ใช้เครื่องมือ format และ lint เช่น
black,eslintเพื่อบังคับโค้ดให้อยู่ในมาตรฐาน - ให้ AI ช่วยเขียน docstring และ test ที่สอดคล้องกับ style ของทีม
🔹 4. ใช้ AI เพื่อ “เรียนรู้” ไม่ใช่แค่ “ผลิตโค้ด”
คุณค่าที่แท้จริงของ AI ไม่ใช่เพียงช่วยให้พิมพ์โค้ดได้ไวขึ้น แต่คือการทำให้คุณเข้าใจและเรียนรู้ได้ลึกขึ้น
- ถาม AI ให้ อธิบายโค้ด:
- “regex นี้ทำงานยังไง อธิบายทีละขั้นตอน”
- “ทำไม FastAPI endpoint นี้ถึงคืนค่า 422”
- ขอให้ AI เปรียบเทียบวิธีการ:
- “เขียนโค้ด caching แบบใช้ Redis กับแบบ in-memory ให้ดูทั้งสองแบบ”
- ให้ AI เสนอทางเลือกใหม่:
- “refactor query นี้ให้เป็น ORM ของ SQLAlchemy”
การใช้วิธีนี้ AI จะกลายเป็น ครูผู้ช่วย ที่ทำให้คุณพัฒนาฝีมือเร็วขึ้น แทนที่จะกลายเป็นเครื่องมือที่ทำให้คุณพึ่งพาโดยไม่คิด
🔹 5. เข้าใจข้อจำกัดและความเสี่ยงของ AI
AI ไม่ได้สมบูรณ์แบบ มันสามารถแต่ง API ที่ไม่มีอยู่จริง แนะนำวิธีที่ไม่ปลอดภัย หรือเขียนโค้ดที่ไม่มีประสิทธิภาพได้
- ตรวจสอบโค้ดจาก AI เหมือนการตรวจงานของนักพัฒนามือใหม่
- ระวัง ช่องโหว่ด้านความปลอดภัย เช่น input ที่ไม่ validate, hardcoded secret, การไม่จัดการ error
- คิดถึง ลิขสิทธิ์และ license ของโค้ดที่ AI สร้างขึ้น
- หลีกเลี่ยงการนำ ข้อมูลลับ ไปใส่ใน prompt
🔹 6. รวม AI เข้ากับ Workflow อย่างฉลาด
AI จะมีประสิทธิภาพสูงสุดเมื่อคุณปรับให้เข้ากับ editor และ workflow ของคุณ
- ใช้ทั้ง structured completion และ inline ghost text:
nvim-cmpหรือ IntelliSense → สำหรับคำแนะนำจาก LSP, snippet, path- Ghost text (เช่น Copilot) → สำหรับ AI เขียนโค้ดต่อให้แบบ inline
- กำหนด keymap ที่ชัดเจน:
<C-Space>→ เปิดเมนู suggestion<C-y>→ ยอมรับ ghost text<C-n>/<C-p>→ เลื่อนดู suggestion
- แบ่งงานให้เหมาะสม:
- ให้ AI เขียน boilerplate, config, migration
- ให้คุณโฟกัสที่ business logic และ security
🔹 สรุป
AI เป็นผู้ช่วยที่ทรงพลัง แต่ถ้าใช้แบบผิดวิธี มันอาจกลายเป็นดาบสองคม การทำงานร่วมกับ AI อย่างถูกต้องคือการมองมันเป็น คู่หูโปรแกรมเมอร์
- ทำงานเป็นขั้นตอนเล็ก ๆ
- คุมมาตรฐานและ style ของโค้ด
- เรียนรู้จากสิ่งที่ AI สร้างขึ้น
- ตรวจสอบและทดสอบเสมอ
- ใช้ AI เพื่อเสริม ไม่ใช่แทนที่
สรุปสั้น ๆ: คุณยังคงเป็นนักบินหลัก และ AI เป็นผู้ช่วยนักบิน แบบนี้แหละที่ทำให้คุณเขียนโค้ดได้เร็วขึ้น ฉลาดขึ้น และปลอดภัยขึ้นในยุค AI
Get in Touch with us
Related Posts
- SimpliPOSFlex. POS สำหรับธุรกิจที่อยู่บนความจริงของหน้างาน
- แนวคิดการเขียนโปรแกรมแบบคลาสสิก: บทเรียนที่เรายังได้เรียนรู้จาก Kernighan & Pike
- ก่อนจะเริ่มเขียนโค้ด: 5 คำถามที่เราถามลูกค้าทุกครั้ง
- ทำไมระบบที่ทำกำไรได้ อาจไม่มีคุณค่าที่แท้จริง
- โลกของเธอ
- สร้างระบบ Automation ที่เชื่อถือได้ด้วย Temporal + Local LLM + Robot Framework แนวทางสำหรับองค์กรไทยที่ต้องการ Automate งานบัญชี-ERP อย่างปลอดภัย
- RPA + AI: ทำไมระบบอัตโนมัติถึงล้มเหลว หากไม่มี “ความฉลาด” และการควบคุมที่ดี
- การจำลองความขัดแย้งชายแดนและ Proxy War
- แก้ “การค้นหาและการเข้าถึง” ก่อน ก้าวแรกที่เร็วที่สุดในการฟื้นคุณค่าห้องสมุดมหาวิทยาลัยในยุคดิจิทัล
- เรากำลังสร้างแพลตฟอร์มใหม่ สำหรับโรงงานที่ขายเศษวัสดุ และโรงงานรีไซเคิลในประเทศไทย
- แนวทางพัฒนา MES ด้วย Python สำหรับโรงงานไทย
- MES vs ERP vs SCADA: บทบาทและขอบเขตที่โรงงานไทยควรรู้
- ทำไมการเรียนเขียนโปรแกรมถึง “เจ็บปวด” — และเราจะแก้มันอย่างไร
- องค์กรควรเลือก AI แบบ GPT หรือ AI แบบ Gemini?
- ตัวอย่างการใช้งานจริงที่ GPT-5.2 เหนือกว่า GPT-5.1 อย่างชัดเจน
- ChatGPT 5.2 vs 5.1 — อธิบายความแตกต่างด้วยอุปมาเข้าใจง่าย
- ทำไมธุรกิจที่กำลังเติบโต มัก “โตเกิน” ซอฟต์แวร์สำเร็จรูปในที่สุด และบริษัทที่ประสบความสำเร็จเขาจัดการอย่างไร
- Computer Vision บน Edge Device และสภาพแวดล้อมทรัพยากรจำกัด: ความท้าทายและโอกาสสำหรับไทย
- Simplico — โซลูชัน AI Automation และระบบซอฟต์แวร์เฉพาะทางสำหรับธุรกิจไทย
- AI สำหรับ Predictive Maintenance — จากเซนเซอร์สู่โมเดลพยากรณ์













