Using the Source–Victim Matrix to Connect RE102 and RS103 in Shipboard EMC
Introduction
Electromagnetic Compatibility (EMC) is not just about passing tests in the lab. On naval platforms, dozens of communication, radar, and navigation systems must operate side by side without interfering with one another.
Two MIL-STD-461G tests cover opposite sides of this challenge:
- RE102 (Radiated Emissions): how much a device radiates.
- RS103 (Radiated Susceptibility): how much a device can withstand.
Individually, they ensure compliance. Together, they help answer the key question: can these systems coexist in the same shipboard environment?
That’s where the Source–Victim (SV) matrix comes in.
RE102 vs RS103 in Plain Terms
- RE102: You sweep across frequencies and measure a device’s emitted field strength (V/m or dBµV/m).
- RS103: You expose the device to known fields and check that it keeps working up to a defined immunity threshold (V/m or dBµV/m).
On their own, these tests are useful. But by combining them, you get a system-level picture of electromagnetic compatibility.
The SV Matrix Concept
The SV matrix compares every emitter (source) against every receiver (victim):
- Source device: generates the field (e.g., SATCOM, VHF radio, radar).
- Victim device: could be disturbed (e.g., GPS, NAVTEX, navigation radar).
- Distance: separation on the ship.
- Emission at 1 m (RE102): baseline radiated level.
- Emission at victim location: adjusted for distance and coupling.
- RS103 immunity level: the victim’s required tolerance.
- Margin (dB):
\text{Margin} = RS103 - Emission\_{at\ victim}
- PASS/FAIL: Positive margin = safe. Negative margin = potential interference.
Example from Shipboard Data
From a sample dataset of 338 source–victim pairs, two scenarios stand out:
- Self-coupling (INMARSAT-C → INMARSAT-C)
- Emission at victim ≈ 13.8 MV/m (262 dBµV/m)
- RS103 requirement = 50 V/m (154 dBµV/m)
- Margin = –109 dB → FAIL
- Interpretation: extreme numbers (likely model placeholders), but it reminds us that self-interference is real.
- INMARSAT-C → NAVTEX
- Emission at victim ≈ 0.87 V/m (119 dBµV/m)
- RS103 requirement = 50 V/m (154 dBµV/m)
- Margin = +35 dB → PASS
- Interpretation: NAVTEX is well protected from INMARSAT emissions at this distance.
Workflow (Text Diagram)
Source Device (Tx) --> RE102 Emission at 1 m
|
v
Propagation / Coupling (distance, shielding)
|
v
Predicted Field at Victim (E_at_v, V/m & dBµV/m)
|
+--> Compare with RS103 Immunity Threshold
|
v
Margin = RS103 - E_at_v
|
+---------+----------+
| |
PASS (positive) FAIL (negative)
| |
Record in SV Matrix Apply Mitigation (filter, shield, relocate)
Why It Matters
- Holistic view: Instead of testing devices in isolation, you see how they interact.
- Design guidance: Placement, shielding, or filtering decisions are clearer.
- Early warning: Margins highlight risk areas before integration or deployment.
- Mission reliability: On ships, where space is tight and systems are dense, this method prevents costly surprises.
Example SV Matrix (Text Table)
| Source: VHF | Source: SATCOM | Source: Radar
---------------+----------------+-----------------+----------------
Victim: GPS | +28 dB PASS | +12 dB PASS | -6 dB FAIL
Victim: NAVTEX | +35 dB PASS | +18 dB PASS | +9 dB WARN
Victim: Radar | +42 dB PASS | -3 dB FAIL | +5 dB WARN
- Positive margin = PASS (safe)
- Slightly positive margin = WARN (borderline)
- Negative margin = FAIL (interference risk)
Conclusion
The SV matrix bridges the gap between RE102 (what a system emits) and RS103 (what a system must tolerate). Instead of isolated pass/fail results, you get a system-level compatibility map.
For complex shipboard environments, this method turns EMC analysis from a checkbox exercise into a practical design tool that directly improves mission readiness.
Get in Touch with us
Related Posts
- Rebuilding Trust with Technology After a Crisis
- Digital Beauty: Reimagining Cosmetic Clinics with Mobile Apps
- Smarter Product Discovery with AI: Image Labeling, Translation, and Cross-Selling
- How TAK Systems Transform Flood Disaster Response
- Smarter Shopping: From Photo to Product Recommendations with AI
- Tackling Antenna Coupling Challenges with Our Advanced Simulation Program
- The Future of Work: Open-Source Projects Driving Labor-Saving Automation
- 下一个前沿:面向富裕人群的数字私人俱乐部
- The Next Frontier: A Digital Private Club for the Affluent
- Thinking Better with Code: Using Mathematical Shortcuts to Master Large Codebases
- Building the Macrohard of Today: AI Agents Platform for Enterprises
- Build Vue.js Apps Smarter with Aider + IDE Integration
- Yo Dev! Here’s How I Use AI Tools Like Codex CLI and Aider to Speed Up My Coding
- Working With AI in Coding the Right Way
- How to Select the Right LLM Model: Instruct, MLX, 8-bit, and Embedding Models
- How to Use Local LLM Models in Daily Work
- How to Use Embedding Models with LLMs for Smarter AI Applications
- Smart Vision System for Continuous Material Defect Detection
- Building a Real-Time Defect Detector with Line-Scan + ML (Reusable Playbook)
- How to Read Source Code: Frappe Framework Sample