Understanding Training, Validation, and Testing in Machine Learning
A Complete Guide to How Models Learn, Improve, and Get Evaluated
When learning machine learning or deep learning, one of the most important foundations is understanding the three phases of model development:
- Training
- Validation
- Testing
These three phases ensure that a model not only learns patterns, but also generalizes and performs well in the real world.
This article explains each phase clearly and shows you how they fit together in a complete, automated workflow.
🔥 Part 1 — Training: Where the Model Learns
The training phase is where the neural network actually learns from data.
During training:
- The model performs a forward pass to make predictions
- Loss is computed
- Backpropagation calculates gradients
- The optimizer updates weights
- Repeat for many epochs
✔ Purpose of Training
- Learn patterns
- Adjust model parameters
- Reduce training loss
✔ PyTorch Example
model.train()
for x, y in train_loader:
optimizer.zero_grad()
preds = model(x)
loss = criterion(preds, y)
loss.backward()
optimizer.step()
This is the “learning loop” that makes the model smarter.
🔍 Part 2 — Validation: Where We Tune and Select the Best Model
The validation phase is NOT training.
The model only runs forward to estimate how well it generalizes.
During validation:
- No gradients
- No learning
- No weight updates
- Only evaluation
Validation tells us:
- Is the model overfitting?
- Should we adjust hyperparameters?
- Which epoch produced the best model?
✔ Validation in PyTorch
model.eval()
with torch.no_grad():
for x, y in val_loader:
preds = model(x)
val_loss += criterion(preds, y).item()
✔ Why validation matters
- Prevents overfitting
- Helps tune learning rate, architecture, dropout
- Allows us to save the best model checkpoint
⭐ Part 3 — “Validate Every Epoch → Save Best Model”
After each epoch, we validate the model.
If this epoch’s validation loss is the best so far, we save a checkpoint.
Example:
| Epoch | Train Loss | Val Loss | Action |
|---|---|---|---|
| 1 | 0.50 | 0.42 | save |
| 2 | 0.40 | 0.36 | save |
| 3 | 0.32 | 0.30 | save |
| 4 | 0.28 | 0.35 | no save |
| 5 | 0.26 | 0.31 | no save |
The best model is from epoch 3, not the last epoch.
This prevents overfitting and ensures we select the best version.
⚙️ Part 4 — Early Stopping (Optional Optimization)
Early stopping automatically ends training when validation stops improving.
Example:
patience = 5
Meaning:
👉 If validation loss does not improve for 5 consecutive epochs → stop training.
This saves time and stops overfitting.
🧪 Part 5 — Testing: The Final Exam
The test set is used only once, after selecting the best model.
Test set evaluates:
- Final accuracy
- Real-world performance
- Generalization ability
⚠️ Critical rule:
Do NOT tune model based on test results.
Otherwise test data becomes contaminated.
📊 Part 6 — Full Workflow (Mermaid.js Diagram)
Below is a complete, clean Mermaid.js diagram showing the whole process:
flowchart TD
A[Dataset] --> B[Split Train / Validation / Test]
B --> C[Training Loop<br>Forward + Backprop + Update]
C --> D[Validation Loop<br>No Gradient]
D --> E{Best Validation<br>Performance?}
E -->|Yes| F[Save Best Model Checkpoint]
E -->|No| G[Skip Saving]
F --> H[Continue Training]
G --> H[Continue Training]
H --> I{Training Finished<br>or Early Stopping?}
I -->|No| C
I -->|Yes| J[Load Best Checkpoint]
J --> K[Test Set Evaluation]
K --> L[Final Performance]
This diagram summarizes the entire machine learning lifecycle from data processing to final evaluation.
🧠 Part 7 — Summary
| Phase | Purpose | Learns? |
|---|---|---|
| Training | Learn weights & features | ✔ Yes |
| Validation | Tune hyperparameters, pick best model | ❌ No |
| Testing | Final unbiased evaluation | ❌ No |
The golden workflow:
Train → Validate → Save Best Model → Test Once
This ensures a model that learns well and generalizes well.
Get in Touch with us
Related Posts
- SmartFarm Lite — Simple, Offline-First Farm Records in Your Pocket
- 基于启发式与新闻情绪的短期价格方向评估(Python)
- Estimating Short-Term Price Direction with Heuristics and News Sentiment (Python)
- Rust vs Python:AI 与大型系统时代的编程语言选择
- Rust vs Python: Choosing the Right Tool in the AI & Systems Era
- How Software Technology Can Help Chanthaburi Farmers Regain Control of Fruit Prices
- AI 如何帮助发现金融机会
- How AI Helps Predict Financial Opportunities
- 在 React Native 与移动应用中使用 ONNX 模型的方法
- How to Use an ONNX Model in React Native (and Other Mobile App Frameworks)
- 叶片病害检测算法如何工作:从相机到决策
- How Leaf Disease Detection Algorithms Work: From Camera to Decision
- Smart Farming Lite:不依赖传感器的实用型数字农业
- Smart Farming Lite: Practical Digital Agriculture Without Sensors
- 为什么定制化MES更适合中国工厂
- Why Custom-Made MES Wins Where Ready-Made Systems Fail
- How to Build a Thailand-Specific Election Simulation
- When AI Replaces Search: How Content Creators Survive (and Win)
- 面向中国市场的再生资源金属价格预测(不投机、重决策)
- How to Predict Metal Prices for Recycling Businesses (Without Becoming a Trader)













