How to Automate Industrial Processes with Python and PLC Data
In modern industrial automation, PLC (Programmable Logic Controller) systems are widely used to control and monitor manufacturing processes. However, integrating PLC data with Python-based automation can enhance efficiency, enable predictive maintenance, and optimize workflows.
This guide explains how to use Python to automate industrial processes by reading, analyzing, and acting on PLC data.
Workflow Overview
The following workflow describes the automation process:
flowchart TD;
A[Connect to PLC] -->|Modbus/OPC UA| B[Read PLC Data];
B --> C[Analyze Data];
C -->|Trigger Alerts| D[Send Notifications];
C -->|Adjust Settings| E[Write to PLC];
C -->|Log Data| F[Store in Database];
F --> G[Visualize Data];
G --> H[Generate Reports];
D --> I[Remote Monitoring];
E --> I;
H --> I;
Step 1: Connecting Python to Your PLC System
Option 1: Using Modbus for PLC Communication
Many PLCs support Modbus (TCP/RTU) for data exchange. Python’s pymodbus library can be used to read and write data to a PLC.
from pymodbus.client.sync import ModbusTcpClient
# Connect to PLC
client = ModbusTcpClient('192.168.1.10', port=502)
client.connect()
# Read data from register 100
response = client.read_holding_registers(100, count=1, unit=1)
print("PLC Value:", response.registers[0])
client.close()
Option 2: Using OPC UA for More Advanced PLC Integration
For advanced industrial automation, OPC UA is a preferred standard. Python's opcua library helps retrieve real-time data from PLCs.
from opcua import Client
client = Client("opc.tcp://192.168.1.20:4840")
client.connect()
# Read sensor value from PLC
node = client.get_node("ns=2;s=TemperatureSensor")
value = node.get_value()
print("Temperature:", value)
client.disconnect()
Step 2: Automating Responses Based on PLC Data
Once data is collected, Python can analyze and trigger automated actions such as machine adjustments, alerts, or process optimizations.
Example: Sending Alerts for High Temperature
threshold_temp = 80 # Set temperature threshold
if value > threshold_temp:
print(f"⚠️ ALERT: High temperature detected ({value}°C)")
# Send email notification or activate cooling system
Example: Automatically Adjusting PLC Settings
Python can write data back to the PLC for automated process control.
new_setpoint = 50 # Adjust a process parameter
client.write_register(200, new_setpoint, unit=1) # Writing to register 200
Step 3: Visualizing and Logging Data for Better Monitoring
1. Real-Time Data Visualization with Matplotlib
import matplotlib.pyplot as plt
import time
temperatures = []
timestamps = []
for _ in range(10): # Collect 10 data points
value = node.get_value()
temperatures.append(value)
timestamps.append(time.strftime('%H:%M:%S'))
time.sleep(2) # Sample every 2 seconds
plt.plot(timestamps, temperatures, marker='o')
plt.xlabel('Time')
plt.ylabel('Temperature (°C)')
plt.title('Real-Time PLC Temperature Data')
plt.show()
2. Storing PLC Data in a Database for Future Analysis
import pymysql
conn = pymysql.connect(host='localhost', user='root', password='password', database='plc_data')
cursor = conn.cursor()
# Insert new temperature data
sql = "INSERT INTO sensor_logs (timestamp, temperature) VALUES (NOW(), %s)"
cursor.execute(sql, (value,))
conn.commit()
conn.close()
Step 4: Automating Scheduled Tasks for PLC Data Processing
To automate tasks like data collection, alerts, or system adjustments, use the schedule library.
import schedule
def check_temperature():
value = node.get_value()
print("Checking temperature:", value)
if value > threshold_temp:
print("⚠️ High temperature detected!")
schedule.every(10).seconds.do(check_temperature) # Run every 10 seconds
while True:
schedule.run_pending()
Step 5: Integrating Python with Industrial Robotics & IoT
1. Controlling a Robotic Arm Based on PLC Input
If a PLC detects a defective product, Python can trigger a robotic arm to remove it using libraries like pySerial.
import serial
robot = serial.Serial('/dev/ttyUSB0', 9600)
robot.write(b'MOVE_ARM_DISCARD\n') # Send command to robotic arm
2. Sending PLC Data to the Cloud for Remote Monitoring
To enable remote monitoring, send PLC data to an IoT platform like AWS, Google Cloud, or Azure IoT.
import paho.mqtt.client as mqtt
client = mqtt.Client()
client.connect("mqtt.broker.com", 1883, 60)
client.publish("plc/temperature", value)
Conclusion
By integrating Python with PLC data, industrial processes can be automated, monitored, and optimized in real time.
This guide covered:
✅ Connecting Python to PLCs using Modbus and OPC UA
✅ Automating alerts and machine adjustments
✅ Visualizing PLC data in real time
✅ Logging data into a database for future analysis
✅ Integrating Python with robotics and IoT
🚀 Start automating your industrial workflows today with Python and PLCs!
Get in Touch with us
Related Posts
- Fine-Tuning 与 Prompt Engineering 有什么区别? —— 给中国企业的 AI 应用实战指南
- Fine-Tuning vs Prompt Engineering Explained
- 精准灌溉(Precision Irrigation)入门
- Introduction to Precision Irrigation
- 物联网传感器并不是智慧农业的核心——真正的挑战是“数据整合
- IoT Sensors Are Overrated — Data Integration Is the Real Challenge
- React / React Native 移动应用开发服务提案书(面向中国市场)
- Mobile App Development Using React & React Native
- 面向中国市场的 AI 垂直整合(AI Vertical Integration):帮助企业全面升级为高效率、数据驱动的智能组织
- AI Vertical Integration for Organizations
- 中国企业:2025 年 AI 落地的分步骤实用指南
- How Organizations Can Adopt AI Step-by-Step — Practical Guide for 2025
- 为什么中国企业正在加速采用「AI驱动的EV车队管理系统」
- EV Fleet Management SaaS with AI Optimization: The New Operating System for Modern Fleet Businesses
- 正在改变中国制造业的 7 大机器学习(Machine Learning)系统应用场景
- 7 Real-World Machine Learning System Use Cases Transforming Businesses & Factories
- LSTM洪水与水位预测:推动中国智慧水利和城市防汛的新一代AI技术
- Using LSTM for Flood Water-Level Prediction: How Deep Learning Helps Cities Respond Faster
- 用 AI 和自动化打造企业的降本增效体系(中国企业可操作指南)
- The Technical Blueprint Behind Custom Software and AI for Singapore Businesses













