Automating EXFO Instruments with SCPI: A Practical Guide
In today's fast-paced world of telecom, datacom, and optical network testing, automation is no longer a luxury — it's essential. If you're using EXFO instruments like the NetBlazer, Power Blazer, or iOLM modules, mastering SCPI (Standard Commands for Programmable Instruments) can save you countless hours and unlock powerful test workflows.
Related Contents
- Building a Lightweight EXFO Tester Admin Panel with FastAPI and Alpine.js
- Streamline Fiber Tester Management with a Lightweight EXFO Admin Panel
In this blog post, we'll dive into:
- What SCPI is
- How EXFO instruments use SCPI
- Key SCPI commands for EXFO
- How to build simple Python scripts to automate your testing
Let's get started!
🌟 What is SCPI?
SCPI (pronounced "skippy") is an industry-standard language for controlling test instruments. It's a set of human-readable text commands that allow you to remotely:
- Configure settings
- Start and stop measurements
- Fetch test results
- Handle errors and statuses
If you've ever typed *IDN? to query a device's identity, you've used SCPI!
📊 How EXFO Instruments Use SCPI
EXFO platforms like the FTB-1 Pro, FTB-2 Pro, and FTB-4 Pro, along with modular instruments like the FTBx-88480 (Power Blazer) or FTBx-8880 (NetBlazer), support SCPI over TCP/IP or Telnet sessions.
Each inserted module (called a "slot") is addressed logically using a LINSx ID, like LINS0, LINS2, etc. This allows you to direct SCPI commands specifically to the correct module, even if multiple instruments are present.
Before sending any commands, you should:
- Discover available modules using
STATUS MODULE - Connect to the desired LINS if needed using
CONNECT LINSx
🌐 Basic SCPI Commands for EXFO
Here are some of the most important SCPI commands you need to know:
| Command | Purpose |
|---|---|
*IDN? |
Query the instrument identification |
*RST |
Reset the module to factory default settings |
*CLS |
Clear the event and error queues |
STATUS MODULE |
List all available modules and their LINS IDs |
CONNECT LINSx |
Connect to a specific module |
LINSx:SOUR:DATA:TELecom:TEST:TYPE RFC2544 |
Configure a test type |
LINSx:SOUR:DATA:TELecom:TEST |
Start the test |
LINSx:SOUR:DATA:TELecom:TEST:STOP |
Stop a running test |
FETCh:DATA:TELecom:RFC2544:SUMMary? |
Fetch RFC 2544 summary results |
These basic commands let you fully automate test cycles from initialization to result collection.
🚀 Simple Python Automation Example
Controlling EXFO devices from Python is easy using raw TCP sockets. Here's a basic example:
import socket
def send_scpi_command(command):
ip = "192.168.1.100"
port = 5025
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.connect((ip, port))
s.sendall((command + "\r\n").encode())
response = s.recv(4096).decode()
return response.strip()
# Example usage
print(send_scpi_command("*IDN?"))
print(send_scpi_command("STATUS MODULE"))
For production-grade scripts, you'd want to handle timeouts, retries, and errors more gracefully, but this gives you a functional starting point.
🎓 Pro Tips for SCPI with EXFO
- Always use
STATUS MODULEbefore sending commands to ensure your LINS exists. - Use
*CLSbefore starting new tests to avoid unexpected errors. - After starting a test, poll
LINSx:SOUR:DATA:TELecom:TEST?until it reports "COMPLETED" before fetching results. - Handle error messages like "Index out of bounds" carefully — it usually means you sent a command to a non-existent object.
🌍 Conclusion
SCPI opens the door to powerful automation with EXFO's field-proven instruments. Whether you're validating metro Ethernet networks, mobile backhaul links, or datacenter fiber, automating your test setups can drastically improve efficiency and consistency.
Mastering just a handful of SCPI commands gives you full control over test configuration, execution, and reporting.
Stay tuned for the next post where we'll build a complete Python SCPI test controller for EXFO platforms!
Happy testing! 🚀
Get in Touch with us
Related Posts
- 中国企业:2025 年 AI 落地的分步骤实用指南
- How Organizations Can Adopt AI Step-by-Step — Practical Guide for 2025
- 为什么中国企业正在加速采用「AI驱动的EV车队管理系统」
- EV Fleet Management SaaS with AI Optimization: The New Operating System for Modern Fleet Businesses
- 正在改变中国制造业的 7 大机器学习(Machine Learning)系统应用场景
- 7 Real-World Machine Learning System Use Cases Transforming Businesses & Factories
- LSTM洪水与水位预测:推动中国智慧水利和城市防汛的新一代AI技术
- Using LSTM for Flood Water-Level Prediction: How Deep Learning Helps Cities Respond Faster
- 用 AI 和自动化打造企业的降本增效体系(中国企业可操作指南)
- The Technical Blueprint Behind Custom Software and AI for Singapore Businesses
- Why Singapore Businesses Are Switching to Custom Software and AI — And How It Drives Faster Growth
- SimpliMES Lite — 面向中国中小型制造企业的轻量化 MES 解决方案
- SimpliMES Lite — Lightweight MES for Small & Mid-Sized Manufacturers
- Nursing-Care Robots: How Open-Source Technology Is Powering the Future of Elderly Care
- 为什么中国大模型正在成为电商系统的新引擎?
- 为什么成功的线上卖家都选择 SimpliShop:打造、成长、并持续领先你的市场
- Why Successful Online Sellers Choose SimpliShop: Build, Grow, and Win Your Market
- AI 垂直整合:未来企业竞争力的核心引擎
- Vertical Integration of AI: The Next Breakthrough in Modern Business
- AI 预测系统 —— 让你的决策拥有「超级力量」













