Building a Multi-Market Breakout Stock Screener in Python
📈 Introduction
In the fast-paced world of stock trading, identifying breakouts—moments when a stock’s price pushes above resistance with strong volume—can lead to powerful opportunities. To automate this process, we developed a multi-market breakout stock screener using Python.
This tool scans across markets like the NYSE, Nikkei 50, and Vietnam 50, analyzing price and volume data to pinpoint potential breakout candidates — and it even generates candlestick charts automatically.
🧠 System Overview
The project consists of three modules that work together seamlessly:
| File | Purpose |
|---|---|
test10.py |
The heart of the system — fetches data and applies breakout screening logic. |
breakout.py |
Provides a clean command-line interface (CLI) for running the screener. |
ui_breakout.py |
A graphical user interface (GUI) built with Tkinter for intuitive use. |
Architecture
flowchart TD
A["ui_breakout.py (GUI Interface)"] --> B["breakout.py (CLI Wrapper)"]
B --> C["test10.py (Core Screener)"]
C --> D["Yahoo Finance API"]
C --> E["Chart Generator (Plotly HTML/PNG)"]
⚙️ How It Works
1. Data Collection
The screener fetches three months of daily stock data from Yahoo Finance for top stocks in each market.
Tickers are automatically loaded (e.g., top 50 by market cap for NYSE, Nikkei, and Vietnam).
2. Screening Logic
The script applies a set of breakout filters:
- Recent High: The close price must exceed the previous
lookbackperiod high. - Volume Surge: The trading volume must exceed the average by a configurable multiple (e.g., 1.5×).
- Liquidity Filter: Ensures sufficient dollar volume to avoid illiquid stocks.
- Weekly Confirmation (optional): Confirms breakouts on weekly timeframes.
Example core logic:
if is_breakout(df_t,
lookback=lookback,
volume_mult=volume_mult,
min_margin=min_margin,
min_close_pct=min_close_pct,
weekly_confirm=weekly_confirm,
weekly_lookback=weekly_lookback):
results.append(t)
The program can retry downloads automatically if rate-limited and runs in batches for efficiency.
🌏 Multi-Market Scanning
You can screen multiple markets simultaneously:
- 🇺🇸 NYSE
- 🇯🇵 Nikkei 50
- 🇻🇳 Vietnam 50
- 🇨🇳 SSE 50
- 🇭🇰 HSI 50
- 🇪🇺 Euronext
- 🇺🇸 S&P 50 / 500
Each market uses a tailored ticker list and outputs separate breakout results and charts.
📊 Chart Generation
After detecting breakout candidates, the system can automatically create candlestick charts using Plotly.
Each chart shows:
- Price and volume data
- Recent highs and breakout zones
- Clear visual confirmation of the breakout setup
Example command:
python breakout.py --markets nyse,nikkei50 --charts --chart-format html
Charts are saved under:
charts/<market>/<ticker>.html
🖥️ Graphical User Interface (GUI)
For users who prefer a visual interface, the Tkinter-based GUI (ui_breakout.py) provides:
✅ Market selection checkboxes
✅ Adjustable filters and thresholds
✅ Real-time log output
✅ Run and cancel buttons
✅ Automatic chart previews

The GUI executes the same backend logic but allows easy exploration without command-line input.
🔧 Example Usage
python breakout.py \
--markets sp500,nyse \
--lookback 20 \
--volume-mult 1.8 \
--charts \
--weekly-confirm
Sample output:
=========> NYSE breakouts: ['AAPL', 'NVDA', 'LMT']
=========> Nikkei50 breakouts: ['SONY', 'TOYOTA']
Saved 12 breakout chart(s) under 'charts/nyse/*.html'
💡 Use Cases
- Swing traders can identify early momentum setups.
- Quant developers can integrate this logic into automated pipelines.
- Analysts and educators can visualize live breakouts in class or reports.
🚀 Future Enhancements
- Add RSI / moving average filters
- Integrate Telegram or Line alerts
- Deploy as a web dashboard with FastAPI
- Include auto-updating market data and backtesting
🧭 Conclusion
This breakout screener demonstrates how Python + yfinance + Plotly can create a professional-grade stock analysis tool.
Whether you prefer CLI or GUI, it helps traders spot breakout opportunities early and visually confirm them before the crowd reacts.
Get in Touch with us
Related Posts
- AI 反模式:AI 如何“毁掉”系统
- Anti‑Patterns Where AI Breaks Systems
- 为什么我们不仅仅开发软件——而是让系统真正运转起来
- Why We Don’t Just Build Software — We Make Systems Work
- 实用的 Wazuh 管理员 Prompt Pack
- Useful Wazuh Admin Prompt Packs
- 为什么政府中的遗留系统替换往往失败(以及真正可行的方法)
- Why Replacing Legacy Systems Fails in Government (And What Works Instead)
- Vertical AI Use Cases Every Local Government Actually Needs
- 多部门政府数字服务交付的设计(中国版)
- Designing Digital Service Delivery for Multi-Department Governments
- 数字政务服务在上线后失败的七个主要原因
- The Top 7 Reasons Digital Government Services Fail After Launch
- 面向市级与区级政府的数字化系统参考架构
- Reference Architecture for Provincial / Municipal Digital Systems
- 实用型 GovTech 架构:ERP、GIS、政务服务平台与数据中台
- A Practical GovTech Architecture: ERP, GIS, Citizen Portal, and Data Platform
- 为什么应急响应系统必须采用 Offline First 设计(来自 ATAK 的启示)
- Why Emergency Systems Must Work Offline First (Lessons from ATAK)
- 为什么地方政府的软件项目会失败 —— 如何在编写代码之前避免失败













