Understanding How AI Models Work: A Guide for All Readers
Artificial Intelligence (AI) is widely used today, from chatbots to automated assistants. But how does AI work behind the scenes? This post will explain AI in a way that both technical and non-technical readers can understand, covering how AI processes requests and generates responses.
What Are AI Model Parameters?
AI models rely on parameters, which are like settings that help the AI understand and generate responses. These include:
- Weights and Biases (Technical) – Mathematical values that determine the strength of connections between neurons in a neural network.
- Patterns & Rules (Non-Technical) – The AI learns relationships between words and concepts.
- Attention Weights (Both) – The AI decides which words or parts of input matter most in context.
- Filters/Kernels (Technical) – Used in image recognition and text processing to extract key details.
Mathematically, a neural network processes an input X using weights W and biases b:
Y = W \cdot X + b
where Y is the output.
AI Model Sizes: How Big Are They?
AI models come in different sizes based on the number of parameters they use. Here’s a simple comparison:
| Model Type | Size | Used For |
|---|---|---|
| Small AI Models | < 1B parameters | Simple tasks like spell checkers |
| Medium AI Models | 7B parameters | Chatbots and coding assistants |
| Large AI Models | 175B+ parameters | Advanced AI like ChatGPT and Google’s Bard |
Larger models typically perform better but require more computing power and data.
How AI Understands and Processes a Request
Let’s say you ask an AI: "Write a Python factorial program"
Here’s what happens inside the AI model:
Step-by-Step AI Workflow
- Tokenization (Technical): The input text is broken down into smaller pieces (tokens).
- Breaking Down the Request (Non-Technical): AI separates words for easier understanding.
- Mapping to Numerical IDs (Technical): Each token is converted into a number from the AI’s vocabulary.
- Understanding Meaning (Both): AI uses past examples to interpret the request.
- Finding Patterns (Both): The AI looks at billions of examples it has seen before.
- Generating a Response (Technical): AI predicts the next token (word) step by step.
- Final Output (Non-Technical): The AI produces a human-readable response.
Mathematically, the AI predicts the next word y_t given previous words using a probability function:
P(y_t | y_1, y_2, ..., y_{t-1}) = \text{softmax}(W h_t + b)
where h_t is the hidden state at time t.
Mermaid.js Workflow Diagram
This diagram illustrates the AI workflow in both simple and technical terms:
graph TD;
A["User Input: write a python factorial program"] --> B["Tokenization & Breaking Down Words"]
B --> C["Mapping to Numerical IDs"]
C --> D["Understanding Meaning & Finding Patterns"]
D --> E["Generating Response Step-by-Step"]
E --> F["Final Output"]
Example Response: Python Factorial Program
If you ask AI to generate a factorial program, it might reply with:
def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)
print(factorial(5))
This follows the mathematical formula for factorial:
n! = n \times (n-1)! \text{ for } n > 0, \quad 0! = 1
Conclusion
AI models work by recognizing patterns, processing input step by step, and generating responses. Whether you're a beginner or an expert, understanding these fundamentals can help you appreciate how AI is shaping our world.
Would you like to explore more AI concepts? Let us know in the comments! 🚀
Get in Touch with us
Related Posts
- Building a Multi-Market Breakout Stock Screener in Python
- How Agentic AI and MCP Servers Work Together: The Next Step in Intelligent Automation
- DevOps in Django E-Commerce System with DRF and Docker
- How AI Can Solve Real Challenges in Agile Development
- Connecting TAK and Wazuh for Real-Time Threat Awareness
- Scaling Wazuh for Multi-Site Network Security Monitoring
- Why ERP Projects Fail — and How to Avoid It
- How to Build Strong Communities with Technology
- How AI Can Make Open Zoos More Fun, Smart, and Educational
- How to Choose the Right Recycling Factory for Industrial Scrap
- Understanding Modern Database Technologies — and How to Choose the Right One
- The Future Is at the Edge — Understanding Edge & Distributed Computing in 2025
- NVIDIA and the Two Waves: From Crypto to AI — The Art of Riding a Bubble
- From Manual Checks to AI-Powered Avionics Maintenance
- Automated Certificate Generator from XLSX Templates
- Introducing SimpliPOS (COFF POS) — A Café-Focused POS System
- Building a Local-First Web App with Alpine.js — Fast, Private, and Serverless
- Carbon Footprint Calculator (Recycling) — Measuring CO₂ Savings in Recycling Operations
- Recycle Factory Tools: A Smarter Way to Track Scrap Operations
- Running Form Coach — Cadence Metronome, Tapper, Drills, Posture Checklist













