How to Connect and Integrate PLC Data from a Database with Python

If you're looking for an efficient way to retrieve, process, and visualize PLC data stored in a database using Python, this guide will help you. Whether your PLC (Programmable Logic Controller) data is stored in MySQL, PostgreSQL, SQLite, or MongoDB, we’ll cover how to connect, fetch, and analyze the data in Python.


Step 1: Install Python Database Connection Libraries

First, install the necessary Python libraries based on your database type.

pip install pymysql psycopg2 sqlite3 pymongo sqlalchemy pandas
  • MySQL: pymysql
  • PostgreSQL: psycopg2
  • SQLite: sqlite3 (built-in)
  • MongoDB: pymongo
  • ORM (Optional for multiple databases): sqlalchemy

Step 2: Connect Python to Your PLC Database

Connect Python to MySQL Database

If your PLC stores data in a MySQL database, use pymysql:

import pymysql

# Connect to MySQL database
conn = pymysql.connect(
    host='localhost',
    user='root',
    password='yourpassword',
    database='plc_data'
)

cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()

# Print retrieved PLC data
for row in data:
    print(row)

conn.close()

Connect Python to PostgreSQL Database

For PostgreSQL PLC data, use psycopg2:

import psycopg2

# Connect to PostgreSQL
conn = psycopg2.connect(
    host="localhost",
    database="plc_data",
    user="postgres",
    password="yourpassword"
)

cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()

for row in data:
    print(row)

conn.close()

Connect Python to SQLite Database

If your PLC logs data into SQLite, use sqlite3:

import sqlite3

# Connect to SQLite
conn = sqlite3.connect("plc_data.db")
cursor = conn.cursor()

cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()

for row in data:
    print(row)

conn.close()

Connect Python to MongoDB for PLC Data

If your PLC data is stored in MongoDB, use pymongo:

from pymongo import MongoClient

# Connect to MongoDB
client = MongoClient("mongodb://localhost:27017/")
db = client["plc_data"]
collection = db["sensor_readings"]

for record in collection.find():
    print(record)

Step 3: Process and Analyze PLC Data in Python

Convert Data to Pandas DataFrame

Once you have retrieved the data, you can process it with Pandas:

import pandas as pd

df = pd.DataFrame(data, columns=["timestamp", "temperature", "pressure", "status"])
print(df.head())

Step 4: Visualize PLC Data in Python

Plot PLC Data Using Matplotlib

To plot PLC sensor data, use matplotlib:

import matplotlib.pyplot as plt

df['timestamp'] = pd.to_datetime(df['timestamp'])
plt.plot(df['timestamp'], df['temperature'], label="Temperature")
plt.plot(df['timestamp'], df['pressure'], label="Pressure")
plt.xlabel("Time")
plt.ylabel("Sensor Readings")
plt.title("PLC Sensor Data Over Time")
plt.legend()
plt.show()

Step 5: Automate Data Fetching (Real-Time Updates)

If you want to fetch new PLC data automatically at intervals, use schedule:

import schedule
import time

def fetch_plc_data():
    conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
    data = cursor.fetchall()
    print("Latest PLC Data:", data)
    conn.close()

# Fetch data every 10 seconds
schedule.every(10).seconds.do(fetch_plc_data)

while True:
    schedule.run_pending()
    time.sleep(1)

Step 6: Create a Web Dashboard to Display PLC Data

If you need to display PLC data in a web dashboard, you can use Flask:

from flask import Flask, render_template
import pymysql

app = Flask(__name__)

def get_plc_data():
    conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
    data = cursor.fetchall()
    conn.close()
    return data

@app.route("/")
def index():
    data = get_plc_data()
    return render_template("index.html", data=data)

if __name__ == "__main__":
    app.run(debug=True)

Step 7: Set Alerts for Abnormal PLC Sensor Data

If you need to trigger alerts for high temperature, pressure, or machine failure, use Python logic:

for row in data:
    timestamp, temperature, pressure, status = row
    if temperature > 80:
        print(f"⚠️ ALERT: High temperature detected at {timestamp}: {temperature}°C")
    if pressure > 100:
        print(f"⚠️ ALERT: High pressure detected at {timestamp}: {pressure} Pa")

Final Thoughts

This guide covers how to connect Python to a PLC database, fetch sensor data, process it in Pandas, visualize it using Matplotlib, set up real-time updates, build a web dashboard, and trigger alerts.

This approach ensures real-time monitoring, predictive maintenance, and automation in industrial applications. Let me know if you need additional integrations!

Related Posts

Articles

Our Products


Related Posts

Articles

Our Products


Get in Touch with us

Speak to Us or Whatsapp(+66) 83001 0222

Chat with Us on LINEiiitum1984

Our HeadquartersChanthaburi, Thailand