How to Connect and Integrate PLC Data from a Database with Python
If you're looking for an efficient way to retrieve, process, and visualize PLC data stored in a database using Python, this guide will help you. Whether your PLC (Programmable Logic Controller) data is stored in MySQL, PostgreSQL, SQLite, or MongoDB, we’ll cover how to connect, fetch, and analyze the data in Python.
Step 1: Install Python Database Connection Libraries
First, install the necessary Python libraries based on your database type.
pip install pymysql psycopg2 sqlite3 pymongo sqlalchemy pandas
- MySQL:
pymysql
- PostgreSQL:
psycopg2
- SQLite:
sqlite3
(built-in) - MongoDB:
pymongo
- ORM (Optional for multiple databases):
sqlalchemy
Step 2: Connect Python to Your PLC Database
Connect Python to MySQL Database
If your PLC stores data in a MySQL database, use pymysql
:
import pymysql
# Connect to MySQL database
conn = pymysql.connect(
host='localhost',
user='root',
password='yourpassword',
database='plc_data'
)
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
# Print retrieved PLC data
for row in data:
print(row)
conn.close()
Connect Python to PostgreSQL Database
For PostgreSQL PLC data, use psycopg2
:
import psycopg2
# Connect to PostgreSQL
conn = psycopg2.connect(
host="localhost",
database="plc_data",
user="postgres",
password="yourpassword"
)
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
for row in data:
print(row)
conn.close()
Connect Python to SQLite Database
If your PLC logs data into SQLite, use sqlite3
:
import sqlite3
# Connect to SQLite
conn = sqlite3.connect("plc_data.db")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings")
data = cursor.fetchall()
for row in data:
print(row)
conn.close()
Connect Python to MongoDB for PLC Data
If your PLC data is stored in MongoDB, use pymongo
:
from pymongo import MongoClient
# Connect to MongoDB
client = MongoClient("mongodb://localhost:27017/")
db = client["plc_data"]
collection = db["sensor_readings"]
for record in collection.find():
print(record)
Step 3: Process and Analyze PLC Data in Python
Convert Data to Pandas DataFrame
Once you have retrieved the data, you can process it with Pandas:
import pandas as pd
df = pd.DataFrame(data, columns=["timestamp", "temperature", "pressure", "status"])
print(df.head())
Step 4: Visualize PLC Data in Python
Plot PLC Data Using Matplotlib
To plot PLC sensor data, use matplotlib
:
import matplotlib.pyplot as plt
df['timestamp'] = pd.to_datetime(df['timestamp'])
plt.plot(df['timestamp'], df['temperature'], label="Temperature")
plt.plot(df['timestamp'], df['pressure'], label="Pressure")
plt.xlabel("Time")
plt.ylabel("Sensor Readings")
plt.title("PLC Sensor Data Over Time")
plt.legend()
plt.show()
Step 5: Automate Data Fetching (Real-Time Updates)
If you want to fetch new PLC data automatically at intervals, use schedule
:
import schedule
import time
def fetch_plc_data():
conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
data = cursor.fetchall()
print("Latest PLC Data:", data)
conn.close()
# Fetch data every 10 seconds
schedule.every(10).seconds.do(fetch_plc_data)
while True:
schedule.run_pending()
time.sleep(1)
Step 6: Create a Web Dashboard to Display PLC Data
If you need to display PLC data in a web dashboard, you can use Flask:
from flask import Flask, render_template
import pymysql
app = Flask(__name__)
def get_plc_data():
conn = pymysql.connect(host="localhost", user="root", password="yourpassword", database="plc_data")
cursor = conn.cursor()
cursor.execute("SELECT * FROM sensor_readings ORDER BY timestamp DESC LIMIT 10")
data = cursor.fetchall()
conn.close()
return data
@app.route("/")
def index():
data = get_plc_data()
return render_template("index.html", data=data)
if __name__ == "__main__":
app.run(debug=True)
Step 7: Set Alerts for Abnormal PLC Sensor Data
If you need to trigger alerts for high temperature, pressure, or machine failure, use Python logic:
for row in data:
timestamp, temperature, pressure, status = row
if temperature > 80:
print(f"⚠️ ALERT: High temperature detected at {timestamp}: {temperature}°C")
if pressure > 100:
print(f"⚠️ ALERT: High pressure detected at {timestamp}: {pressure} Pa")
Final Thoughts
This guide covers how to connect Python to a PLC database, fetch sensor data, process it in Pandas, visualize it using Matplotlib, set up real-time updates, build a web dashboard, and trigger alerts.
This approach ensures real-time monitoring, predictive maintenance, and automation in industrial applications. Let me know if you need additional integrations!
Related Posts
- カスタム XLSX レポートと自動認証で製造プロセスを最適化
- เพิ่มประสิทธิภาพกระบวนการผลิตของคุณด้วยรายงาน XLSX แบบกำหนดเองและการรับรองอัตโนมัติ
- Streamline Your Manufacturing Process with Custom XLSX Reports & Automated Certifications
- 的中文翻译为: “如何使用 Python 和 PLC 数据自动化工业流程
- PythonとPLCデータを活用した産業プロセスの自動化
- วิธีการทำให้กระบวนการอุตสาหกรรมเป็นอัตโนมัติด้วย Python และข้อมูลจาก PLC
- How to Automate Industrial Processes with Python and PLC Data
- วิธีเชื่อมต่อและดึงข้อมูล PLC จากฐานข้อมูลด้วย Python
- PythonでPLCデータをデータベースから取得・統合する方法
- デジタルツイン: 概要
Articles
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- แนะนำ OCR Document Manager: แปลงเอกสารเป็นข้อความได้ง่ายๆ บนเว็บ
- Introducing OCR Document Manager: Extract Text from Documents with Ease
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
Our Products
Related Posts
- カスタム XLSX レポートと自動認証で製造プロセスを最適化
- เพิ่มประสิทธิภาพกระบวนการผลิตของคุณด้วยรายงาน XLSX แบบกำหนดเองและการรับรองอัตโนมัติ
- Streamline Your Manufacturing Process with Custom XLSX Reports & Automated Certifications
- 的中文翻译为: “如何使用 Python 和 PLC 数据自动化工业流程
- PythonとPLCデータを活用した産業プロセスの自動化
- วิธีการทำให้กระบวนการอุตสาหกรรมเป็นอัตโนมัติด้วย Python และข้อมูลจาก PLC
- How to Automate Industrial Processes with Python and PLC Data
- วิธีเชื่อมต่อและดึงข้อมูล PLC จากฐานข้อมูลด้วย Python
- PythonでPLCデータをデータベースから取得・統合する方法
- デジタルツイン: 概要
Articles
- OCR Document Managerのご紹介:書類を簡単にテキスト化できるWebアプリ
- แนะนำ OCR Document Manager: แปลงเอกสารเป็นข้อความได้ง่ายๆ บนเว็บ
- Introducing OCR Document Manager: Extract Text from Documents with Ease
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น