Testing an AI Tool That Finds Winning Products Before They Trend — Interested?
I’ve been experimenting with an idea:
An AI-powered product curator that helps you discover high-potential products before they go viral.
This post is part of my experiment.
If enough people show interest, I’ll turn it into a real tool.
💡 The Problem
If you sell online, you’ve probably asked:
“What should I sell next?”
“Will this product actually take off?”
Most product tools show what’s already trending.
By then, the opportunity is often gone.
What we need is something smarter—something that predicts what people will want next, before the market floods.
🚀 The Idea: AI Product Curator
I’m building a prototype that uses AI to:
- Scan product data (from marketplaces, social media, etc.)
- Analyze emotional appeal and descriptions
- Predict which products will trend soon
- Group similar products into niche clusters
Imagine a 24/7 virtual product scout that shows you what to test, stock, or market—based on real signals.
🧠 How It Works (So Far)
- TF-IDF + NLP → understands product descriptions
- Trend signals → popularity score, price, emotional tone
- Logistic regression → predicts whether it will trend
- KMeans clustering → groups products into themes
You get a simple shortlist:
- ✅ “Test this”
- 💤 “Skip this”
- 🧠 “This category is heating up”
🗺 System Workflow (Mermaid.js)
graph TD
A["Start: Product Idea Testing"] --> B["Collect Product Data"]
B --> C["TF-IDF Vectorization of Descriptions"]
C --> D["Combine with Numerical Features (Price, Popularity)"]
D --> E["Train Logistic Regression Model"]
E --> F["Predict If Product is Likely to Trend"]
D --> G["Run KMeans Clustering"]
G --> H["Group Similar Products (Market Segments)"]
F --> I["Select High-Potential Products"]
H --> I
I --> J["Create Shortlist for Testing / Stocking"]
J --> K["Review or Automate Decisions"]
K --> L["Deploy to Live System or Dashboard"]
🧰 Tools I'm Using
- Python + Scikit-learn (ML & clustering)
- TF-IDF (text vectorization)
- Streamlit or dashboard for prototyping
- Next: Google Trends, TikTok insights, GPT copywriting
🙋♀️ Would You Use It?
This is just a prototype right now.
If enough people want it, I’ll build a beta version.
👉 Email me at hello@simplico.net
👉 Or add me on LINE: iiitum1984
Let me know if this kind of tool would help you test product ideas, stock the right inventory, or stay ahead of the trends.
Let’s see if it’s worth building.
Related Posts
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- Training YOLO with a Custom Dataset: A Step-by-Step Guide
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
Articles
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
- Design Patterns That Help Tame Legacy Code (With Python Examples)
- 🧠 レガシーコードに安全に新機能を追加する方法
- วิธีเพิ่มฟีเจอร์ใหม่ในซอฟต์แวร์ Legacy อย่างปลอดภัย
Our Products
Related Posts
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- 量子コンピューティングはAIのボトルネックを解決できるのか?
- ควอนตัมคอมพิวติ้งสามารถแก้ไขปัญหาคอขวดของ AI ได้หรือไม่?
- Can Quantum Computing Solve AI’s Biggest Bottlenecks
- วิธีฝึก YOLO ด้วยชุดข้อมูลที่กำหนดเอง: คำแนะนำทีละขั้นตอน
- カスタムデータセットでYOLOをトレーニングする方法:ステップバイステップガイド
- Training YOLO with a Custom Dataset: A Step-by-Step Guide
- WazuhとAIの統合による高度な脅威検出
- การผสานรวม AI กับ Wazuh เพื่อการตรวจจับภัยคุกคามขั้นสูง
Articles
- ผมกำลังทดสอบเครื่องมือ AI ที่ช่วยหาสินค้ามาแรงก่อนใคร — คุณสนใจไหม?
- まだバズっていない「売れ筋商品」をAIで発見するツールを作っています ― 興味ありますか?
- あなたのウェブサイトがリードを失っている理由 — それは「沈黙」です
- เว็บไซต์ของคุณกำลังเสียโอกาส — เพราะมัน "เงียบเกินไป"
- Your Website Is Losing Leads After Hours — Here’s the Fix
- スマート農業を革新するAgentic AIとは?あなたの農場が今すぐ導入すべき理由
- Agentic AI คืออะไร? ทำไมฟาร์มของคุณถึงควรใช้ตั้งแต่วันนี้
- How Agentic AI is Revolutionizing Smart Farming — And Why Your Farm Needs It Now
- LangChain + Ollama で RAGチャットボットを作る方法
- How to Apply RAG Chatbot with LangChain + Ollama
- วิธีสร้าง RAG Chatbot ด้วย LangChain + Ollama
- การใช้งาน SCPI กับอุปกรณ์ EXFO: คู่มือฉบับใช้งานจริง
- SCPI を使った EXFO 機器の自動化:実践ガイド
- Automating EXFO Instruments with SCPI: A Practical Guide
- レガシーコードを扱いやすくするためのデザインパターン
- Design Patterns ที่ช่วยให้จัดการ Legacy Code ได้ง่ายขึ้น
- Design Patterns That Help Tame Legacy Code (With Python Examples)
- 🧠 レガシーコードに安全に新機能を追加する方法
- วิธีเพิ่มฟีเจอร์ใหม่ในซอฟต์แวร์ Legacy อย่างปลอดภัย