How AI Transforms COI Management: A Real Factory Use Case (Hybrid Rasa + LangChain)
Managing COIs (Certificates of Inspection) inside a factory is usually a slow and manual process. QC staff search for customers, check lot numbers, look up QC results, generate Excel files, and manually send reports.
At Simplico, we built a Hybrid AI Assistant powered by Rasa (structured conversational control) + LangChain (agentic reasoning + SQL tools + RAG) to automate these workflows using a simple chat interface.
In this article, we walk through a real end-to-end use case from our Factory Automation POC and show the full system architecture diagram behind it.
🧠 System Architecture (Hybrid Rasa + LangChain)
Before jumping into the story, here is the architecture that powers the COI AI assistant:
┌─────────────────────────────┐
│ Factory Staff │
│ (QC, Engineer, Sales, Admin) │
└──────────────┬───────────────┘
│
▼
┌─────────────────────────────┐
│ Web Chat UI │
│ (Browser, LINE, Slack, etc.)│
└──────────────┬───────────────┘
│
▼
┌────────────────────────────────────┐
│ AI Gateway Layer │
│ Routes messages to Rasa/LangChain │
└───────┬────────────────────────────┘
│
┌──────────────────┼───────────────────┐
│ │ │
▼ ▼ ▼
┌────────────────┐ ┌───────────────────┐ ┌───────────────────────┐
│ Rasa NLU + │ │ LangChain RAG │ │ LangChain Agent │
│ Dialogue Core │ │ Document Search │ │ Tools + Reasoning │
└────────────────┘ │ (Manual, SOPs) │ └───────────────────────┘
│ └───────────────────┘ │
│ │
▼ ▼
┌──────────────────────────┐ ┌────────────────────────────────┐
│ Rasa Custom Actions │ │ Agent Toolsets │
│ (Python logic, routing) │ │ - SQL Query Tool │
│ - Entity disambiguation │ │ - COI XLSX Generator Tool │
│ - User selection logic │ │ - Lot Lookup Tool │
└───────────────┬──────────┘ │ - Product Data Tool │
│ └───────────────┬────────────────┘
▼ ▼
┌────────────────────────────────┐ ┌──────────────────────────────────┐
│ COI / QC Database │ │ Document & Vector Store │
│ (Customers, Products, Lots, │ │ (Manuals, SOPs, Embeddings) │
│ Test Results, History, etc.) │ │ FAISS / PGVector │
└────────────────────────────────┘ └──────────────────────────────────┘
This hybrid model combines the safety of structured dialog with the intelligence of agentic AI—making it perfect for real factory environments.
🔍 1. Searching Customer Data with Natural Conversation
Instead of browsing menus, the staff simply types:
User:
“Show me data of Toyota”
The AI instantly looks up the COI database.
Since factories often have multiple similar customers, the assistant clarifies:
AI:
“I found multiple customers named ‘Toyota’.
Please choose one:
- Toyota Motor
- Toyota Thailand
- Toyota Industrial Asia
- Toyota Logistics Service”
This disambiguation is generated by LangChain SQL tools but controlled safely by Rasa dialogue rules.
The user chooses:
User:
“2”
AI:
“You selected Toyota Thailand.
Here is the customer profile:
- Customer Code: C-TH-112
- Total COIs issued: 243
- Active product codes: 18
- Address: Samut Prakan, Thailand”
🧾 2. Generating a COI File
Now the user requests a COI.
User:
“Create COI for lot 123-456A”
AI performs:
- Lot lookup
- QC result check
- Template loading
- XLSX generation
- Upload to COI storage
AI:
“✔ Lot found
✔ QC: Passed
✔ Using template: COI_Template_v3.xlsx
Generating COI…”
After 2 seconds:
AI:
“Your COI is ready:
📄 Toyota_Thailand_COI_123-456A.xlsx
Download: s3://coi/Toyota_Thailand_COI_123-456A.xlsx”
The entire COI workflow—normally 5–10 minutes—finishes instantly.
📦 3. Listing Lots Under a Product Code
User:
“List lot numbers for product code P-9981”
AI:
“Here are the lots for P-9981:
- 123-456A — Completed
- 123-456B — Awaiting QC
- 123-457A — Completed
- 123-458C — Testing
- 123-460A — Completed (Pending COI)
Would you like to see any lot?”
User:
“Okay”
AI:
“Please choose 1–5.”
🏭 4. Inspecting Lot Data
User:
“1”
The AI returns a full QC + production summary:
Product
- Code: P-9981
- Name: Aluminum Housing
QC Results
- Hardness: 88.5 HRC
- Chemical Composition: OK
- Dimension: Passed
- Visual: No defects
Production
- Machine: CNC Line #2
- Date: 2025-01-14
- Operator Team: B
- Cycle Time: 2.8 minutes
Then the AI asks:
“Would you like to generate the COI, export to Excel, or compare with other lots?”
📘 5. Retrieving SOPs Through RAG
User:
“Show SOP for this product.”
AI (via RAG search):
“Here are the SOP steps for P-9981:
- Visual inspection
- Measure dimensions (±0.05 mm)
- Hardness test (85–90 HRC)
- XRF analysis
- COI preparation”
Everything comes directly from the factory’s SOP documents using vector embeddings + LangChain.
📊 6. Summarizing COI History
User:
“Summarize COI history for Toyota Thailand.”
AI:
COI Summary – Last 90 Days
- Total COIs: 62
- QC Pass Rate: 98.3%
- Delayed COIs: 2
- Main product: P-9981
“Would you like this as PDF, Excel, or email?”
🚀 Final Thoughts
This use case shows how a Hybrid Rasa + LangChain AI Assistant can transform COI workflows:
- Natural conversation instead of complex UI
- Automatic COI generation
- Fast lot lookup
- Instant QC insights
- One-click SOP retrieval
- Summary reports on demand
It’s not just a chatbot—it's an intelligent bridge connecting people, data, QC history, manuals, and COI documents into one seamless experience.
This POC proves that AI can save time, reduce errors, and unlock new productivity for factories of any size.
Get in Touch with us
Related Posts
- 2025 年失败的产品 —— 真正的原因是什么?
- The Biggest Product Failures of 2025 — And the Real Reason They Failed
- Agentic AI Explained: Manus vs OpenAI vs Google —— 中国企业的实践选择
- Agentic AI Explained: Manus vs OpenAI vs Google — What Enterprises Really Need
- AI驱动的医院信息系统纵向整合(Vertical Integration)
- How AI Enables Vertical Integration of Hospital Systems
- 工业AI系统中的AI加速器 为什么“软件框架”比“芯片性能”更重要
- AI Accelerators in Industrial AI Systems: Why Software Frameworks Matter More Than Chips
- 面向中国企业的系统开发:以 AI + 工作流安全集成电商与 ERP
- Global-Ready System Development for EC–ERP Integration with AI & Workflow
- 不可靠的“智能”系统所隐藏的真实成本
- The Hidden Cost of ‘Smart’ Systems That Don’t Work Reliably
- GPU vs LPU vs TPU:如何选择合适的 AI 加速器
- GPU vs LPU vs TPU: Choosing the Right AI Accelerator
- 什么是 LPU?面向中国企业的实践性解析与应用场景
- What Is an LPU? A Practical Introduction and Real‑World Applications
- 面向软件工程师的网络安全术语对照表
- Cybersecurity Terms Explained for Software Developers
- 现代网络安全监控与事件响应系统设计 基于 Wazuh、SOAR 与威胁情报的可落地架构实践
- Building a Modern Cybersecurity Monitoring & Response System. A Practical Architecture Using Wazuh, SOAR, and Threat Intelligence













