How AI Transforms COI Management: A Real Factory Use Case (Hybrid Rasa + LangChain)
Managing COIs (Certificates of Inspection) inside a factory is usually a slow and manual process. QC staff search for customers, check lot numbers, look up QC results, generate Excel files, and manually send reports.
At Simplico, we built a Hybrid AI Assistant powered by Rasa (structured conversational control) + LangChain (agentic reasoning + SQL tools + RAG) to automate these workflows using a simple chat interface.
In this article, we walk through a real end-to-end use case from our Factory Automation POC and show the full system architecture diagram behind it.
🧠 System Architecture (Hybrid Rasa + LangChain)
Before jumping into the story, here is the architecture that powers the COI AI assistant:
┌─────────────────────────────┐
│ Factory Staff │
│ (QC, Engineer, Sales, Admin) │
└──────────────┬───────────────┘
│
▼
┌─────────────────────────────┐
│ Web Chat UI │
│ (Browser, LINE, Slack, etc.)│
└──────────────┬───────────────┘
│
▼
┌────────────────────────────────────┐
│ AI Gateway Layer │
│ Routes messages to Rasa/LangChain │
└───────┬────────────────────────────┘
│
┌──────────────────┼───────────────────┐
│ │ │
▼ ▼ ▼
┌────────────────┐ ┌───────────────────┐ ┌───────────────────────┐
│ Rasa NLU + │ │ LangChain RAG │ │ LangChain Agent │
│ Dialogue Core │ │ Document Search │ │ Tools + Reasoning │
└────────────────┘ │ (Manual, SOPs) │ └───────────────────────┘
│ └───────────────────┘ │
│ │
▼ ▼
┌──────────────────────────┐ ┌────────────────────────────────┐
│ Rasa Custom Actions │ │ Agent Toolsets │
│ (Python logic, routing) │ │ - SQL Query Tool │
│ - Entity disambiguation │ │ - COI XLSX Generator Tool │
│ - User selection logic │ │ - Lot Lookup Tool │
└───────────────┬──────────┘ │ - Product Data Tool │
│ └───────────────┬────────────────┘
▼ ▼
┌────────────────────────────────┐ ┌──────────────────────────────────┐
│ COI / QC Database │ │ Document & Vector Store │
│ (Customers, Products, Lots, │ │ (Manuals, SOPs, Embeddings) │
│ Test Results, History, etc.) │ │ FAISS / PGVector │
└────────────────────────────────┘ └──────────────────────────────────┘
This hybrid model combines the safety of structured dialog with the intelligence of agentic AI—making it perfect for real factory environments.
🔍 1. Searching Customer Data with Natural Conversation
Instead of browsing menus, the staff simply types:
User:
“Show me data of Toyota”
The AI instantly looks up the COI database.
Since factories often have multiple similar customers, the assistant clarifies:
AI:
“I found multiple customers named ‘Toyota’.
Please choose one:
- Toyota Motor
- Toyota Thailand
- Toyota Industrial Asia
- Toyota Logistics Service”
This disambiguation is generated by LangChain SQL tools but controlled safely by Rasa dialogue rules.
The user chooses:
User:
“2”
AI:
“You selected Toyota Thailand.
Here is the customer profile:
- Customer Code: C-TH-112
- Total COIs issued: 243
- Active product codes: 18
- Address: Samut Prakan, Thailand”
🧾 2. Generating a COI File
Now the user requests a COI.
User:
“Create COI for lot 123-456A”
AI performs:
- Lot lookup
- QC result check
- Template loading
- XLSX generation
- Upload to COI storage
AI:
“✔ Lot found
✔ QC: Passed
✔ Using template: COI_Template_v3.xlsx
Generating COI…”
After 2 seconds:
AI:
“Your COI is ready:
📄 Toyota_Thailand_COI_123-456A.xlsx
Download: s3://coi/Toyota_Thailand_COI_123-456A.xlsx”
The entire COI workflow—normally 5–10 minutes—finishes instantly.
📦 3. Listing Lots Under a Product Code
User:
“List lot numbers for product code P-9981”
AI:
“Here are the lots for P-9981:
- 123-456A — Completed
- 123-456B — Awaiting QC
- 123-457A — Completed
- 123-458C — Testing
- 123-460A — Completed (Pending COI)
Would you like to see any lot?”
User:
“Okay”
AI:
“Please choose 1–5.”
🏭 4. Inspecting Lot Data
User:
“1”
The AI returns a full QC + production summary:
Product
- Code: P-9981
- Name: Aluminum Housing
QC Results
- Hardness: 88.5 HRC
- Chemical Composition: OK
- Dimension: Passed
- Visual: No defects
Production
- Machine: CNC Line #2
- Date: 2025-01-14
- Operator Team: B
- Cycle Time: 2.8 minutes
Then the AI asks:
“Would you like to generate the COI, export to Excel, or compare with other lots?”
📘 5. Retrieving SOPs Through RAG
User:
“Show SOP for this product.”
AI (via RAG search):
“Here are the SOP steps for P-9981:
- Visual inspection
- Measure dimensions (±0.05 mm)
- Hardness test (85–90 HRC)
- XRF analysis
- COI preparation”
Everything comes directly from the factory’s SOP documents using vector embeddings + LangChain.
📊 6. Summarizing COI History
User:
“Summarize COI history for Toyota Thailand.”
AI:
COI Summary – Last 90 Days
- Total COIs: 62
- QC Pass Rate: 98.3%
- Delayed COIs: 2
- Main product: P-9981
“Would you like this as PDF, Excel, or email?”
🚀 Final Thoughts
This use case shows how a Hybrid Rasa + LangChain AI Assistant can transform COI workflows:
- Natural conversation instead of complex UI
- Automatic COI generation
- Fast lot lookup
- Instant QC insights
- One-click SOP retrieval
- Summary reports on demand
It’s not just a chatbot—it's an intelligent bridge connecting people, data, QC history, manuals, and COI documents into one seamless experience.
This POC proves that AI can save time, reduce errors, and unlock new productivity for factories of any size.
Get in Touch with us
Related Posts
- 边缘计算中的计算机视觉:低算力环境下的挑战与中国市场的新机遇
- Computer Vision in Edge Devices & Low-Resource Environments: Challenges & Opportunities
- Simplico —— 面向中国市场的企业级 AI 自动化与定制软件解决方案
- Simplico — AI Automation & Custom Software Solutions
- 中国版:基于 AI 的预测性维护——从传感器到预测模型的完整解析
- AI for Predictive Maintenance: From Sensors to Prediction Models
- 会计行业中的 AI 助手——能做什么,不能做什么
- AI Assistants for Accountants: What They Can and Cannot Do
- 为什么中小企业在 ERP 定制上花费过高?— 深度解析与解决方案
- Why SMEs Overpay for ERP Customization — And How to Prevent It
- 为什么我们打造 SimpliShop —— 为中国企业提供可扩展、可集成、可定制的电商系统
- Why SimpliShop Was Built — And How It Helps Businesses Grow Faster Worldwide
- Fine-Tuning 与 Prompt Engineering 有什么区别? —— 给中国企业的 AI 应用实战指南
- Fine-Tuning vs Prompt Engineering Explained
- 精准灌溉(Precision Irrigation)入门
- Introduction to Precision Irrigation
- 物联网传感器并不是智慧农业的核心——真正的挑战是“数据整合
- IoT Sensors Are Overrated — Data Integration Is the Real Challenge
- React / React Native 移动应用开发服务提案书(面向中国市场)
- Mobile App Development Using React & React Native













