5 ข้อ ที่เข้าใจผิดในการเขียน code

1. ต้องเป็นคนความจำดี
อันนี้ไม่จริงเลย จริงอยู่ความจำเป็นสิ่งสำคัญ แต่ความเข้าใจสำคัญกว่า และจากที่เขียน code เลี้ยงชีพมาหลายปี หลายๆ ครั้งก็ copy code มาจากตัวอย่าง แล้วเอามาแก้ไข แต่ผมไม่ได้หมายถึงว่า copy แนวคิดของ code ตัวอย่างนะ เราต้องทำการออกแบบ program ของเราเสียก่อน ว่ามันจะทำอย่างไร ด้วยวิธีการอย่างไร
2. ต้องเป็นคนเก่งเลขมากๆหรือฉลาดมากๆ
คือเลขจะใช้ต่อเมื่อเราต้องการ แก้ปัญหาที่ต้องใช้สูตรคณิตศาสตร์ หรือปัญหาที่เกี่ยวกับวิทยาศาสตร์ที่มีสูตรเช่น ฟิสิกซ์ เคมี เป็นต้น แต่โดยส่วนมากแล้ว program ที่เราเขียนมักจะใช้การออกแบบขั้นตอนการทำงานเสียมากกว่า และจะคำนึงถึงหน้าตา ( Graphic User Interface ) ของ program ที่ใช้งานง่าย เราไม่จำเป็นต้องฉลาดแต่แรก แต่เราสามารถเรียนรู้ได้ จากการสังเกต และประสบการณ์ ในทุกๆ วันที่เราลงมือเขียน code
3. ต้องมี computer แรงๆและแพงๆ
ข้อนี้ไม่จำเป็นเลย แต่ขอให้เลือก computer ที่มีหน้าจอชัดเจน รักษาสายตา ส่วนเรื่องความแรงคิดว่า แค่อยู่ในระดับค่อนข้างดี ที่มีขายอยู่ในตลาด ไม่จำเป็นต้องมีการ์ดจอแรงๆ ( ยกเว้นว่าเราจะเขียนเกี่ยวกับ graphic หนักๆ ) ส่วนเรื่อง RAM ถ้ามีเยอะๆก็จะดี เพราะช่วยให้ run program ได้เร็ว จะได้ไม่ขาดช่วง ทำให้เราเสียจังหวะ แต่ที่สำคัญควรทดลองเล่นก่อนที่จะซื้อ หรืออ่าน review จากหลายๆ ที่
4. ไม่จำเป็นต้องรู้หลายภาษาหรือยึดติดว่าภาษานั้นๆจะดีที่สุด
ไม่มีภาษาไหนที่ดีที่สุด ขึ้นอยู่กับว่ามันเหมาะสมกับงานของเราหรือไม่ และความถนัดของเราด้วย แต่ข้อดีที่ได้จากการเขียน code ได้หลายภาษาคือ เราจะได้เรียนรู้แนวคิดที่แตกต่างๆ กันไปในแต่ละภาษา ซึ่งจะมีรายละเอียดเล็กๆ น้อย ที่ช่วยให้เป็นเครื่องมือทางความคิดของเราเพิ่มขึ้น
5. ประสิทธิภาพของภาษามีผลอย่างมากต่อความเร็วของ program
จริงอยู่ถ้าเรานำ program ที่มีการทำงานเหมือนกัน แต่เขียนด้วยภาษาที่แตกต่างกันไป แล้วนำมาวัดเวลาในการทำงานของ program มันจะไม่เท่ากัน แต่มันจะแตกต่างกันในระดับ milli sec ซึ่งน้อยมาก ส่วนมากประสิทธิภาพของ program ที่ดี จะมาจาก กระบวนการแก้ปัญหา ( algorithm ) ที่แตกต่างกัน การออกแบบโครงสร้างข้อมูล ( data structure ) ที่เหมาะสม และการเรียกใช้ หรือ จัดเก็บข้อมูล ( data retrieval / store )
Get in Touch with us
Related Posts
- Transform Your Room with SimRoom: AI-Powered Interior Design
- How to Be Smarter in the AI Era with Science, Math, Coding, and Business
- 🎮 How to Make Projects Fun: Using the Octalysis Framework
- Smart Border Security with Satellites, HALE UAVs, and Cueing Systems
- Fine-Tuning LM Studio for Coding: Mastering `top_p`, `top_k`, and `repeat_penalty`
- A Smarter Way to Manage Scrap: Introducing Our Recycle Management System
- How to Write Use Cases That Really Speak Your Customers’ Language
- After the AI Bubble: Why Gaming Consoles & Local AI Are the Real Promise
- Using the Source–Victim Matrix to Connect RE102 and RS103 in Shipboard EMC
- Rebuilding Trust with Technology After a Crisis
- Digital Beauty: Reimagining Cosmetic Clinics with Mobile Apps
- Smarter Product Discovery with AI: Image Labeling, Translation, and Cross-Selling
- How TAK Systems Transform Flood Disaster Response
- Smarter Shopping: From Photo to Product Recommendations with AI
- Tackling Antenna Coupling Challenges with Our Advanced Simulation Program
- The Future of Work: Open-Source Projects Driving Labor-Saving Automation
- 下一个前沿:面向富裕人群的数字私人俱乐部
- The Next Frontier: A Digital Private Club for the Affluent
- Thinking Better with Code: Using Mathematical Shortcuts to Master Large Codebases
- Building the Macrohard of Today: AI Agents Platform for Enterprises