5 ข้อ ที่เข้าใจผิดในการเขียน code
1. ต้องเป็นคนความจำดี
อันนี้ไม่จริงเลย จริงอยู่ความจำเป็นสิ่งสำคัญ แต่ความเข้าใจสำคัญกว่า และจากที่เขียน code เลี้ยงชีพมาหลายปี หลายๆ ครั้งก็ copy code มาจากตัวอย่าง แล้วเอามาแก้ไข แต่ผมไม่ได้หมายถึงว่า copy แนวคิดของ code ตัวอย่างนะ เราต้องทำการออกแบบ program ของเราเสียก่อน ว่ามันจะทำอย่างไร ด้วยวิธีการอย่างไร
2. ต้องเป็นคนเก่งเลขมากๆหรือฉลาดมากๆ
คือเลขจะใช้ต่อเมื่อเราต้องการ แก้ปัญหาที่ต้องใช้สูตรคณิตศาสตร์ หรือปัญหาที่เกี่ยวกับวิทยาศาสตร์ที่มีสูตรเช่น ฟิสิกซ์ เคมี เป็นต้น แต่โดยส่วนมากแล้ว program ที่เราเขียนมักจะใช้การออกแบบขั้นตอนการทำงานเสียมากกว่า และจะคำนึงถึงหน้าตา ( Graphic User Interface ) ของ program ที่ใช้งานง่าย เราไม่จำเป็นต้องฉลาดแต่แรก แต่เราสามารถเรียนรู้ได้ จากการสังเกต และประสบการณ์ ในทุกๆ วันที่เราลงมือเขียน code
3. ต้องมี computer แรงๆและแพงๆ
ข้อนี้ไม่จำเป็นเลย แต่ขอให้เลือก computer ที่มีหน้าจอชัดเจน รักษาสายตา ส่วนเรื่องความแรงคิดว่า แค่อยู่ในระดับค่อนข้างดี ที่มีขายอยู่ในตลาด ไม่จำเป็นต้องมีการ์ดจอแรงๆ ( ยกเว้นว่าเราจะเขียนเกี่ยวกับ graphic หนักๆ ) ส่วนเรื่อง RAM ถ้ามีเยอะๆก็จะดี เพราะช่วยให้ run program ได้เร็ว จะได้ไม่ขาดช่วง ทำให้เราเสียจังหวะ แต่ที่สำคัญควรทดลองเล่นก่อนที่จะซื้อ หรืออ่าน review จากหลายๆ ที่
4. ไม่จำเป็นต้องรู้หลายภาษาหรือยึดติดว่าภาษานั้นๆจะดีที่สุด
ไม่มีภาษาไหนที่ดีที่สุด ขึ้นอยู่กับว่ามันเหมาะสมกับงานของเราหรือไม่ และความถนัดของเราด้วย แต่ข้อดีที่ได้จากการเขียน code ได้หลายภาษาคือ เราจะได้เรียนรู้แนวคิดที่แตกต่างๆ กันไปในแต่ละภาษา ซึ่งจะมีรายละเอียดเล็กๆ น้อย ที่ช่วยให้เป็นเครื่องมือทางความคิดของเราเพิ่มขึ้น
5. ประสิทธิภาพของภาษามีผลอย่างมากต่อความเร็วของ program
จริงอยู่ถ้าเรานำ program ที่มีการทำงานเหมือนกัน แต่เขียนด้วยภาษาที่แตกต่างกันไป แล้วนำมาวัดเวลาในการทำงานของ program มันจะไม่เท่ากัน แต่มันจะแตกต่างกันในระดับ milli sec ซึ่งน้อยมาก ส่วนมากประสิทธิภาพของ program ที่ดี จะมาจาก กระบวนการแก้ปัญหา ( algorithm ) ที่แตกต่างกัน การออกแบบโครงสร้างข้อมูล ( data structure ) ที่เหมาะสม และการเรียกใช้ หรือ จัดเก็บข้อมูล ( data retrieval / store )
Related Posts
- การสร้างรายงาน Excel แบบกำหนดเองด้วย Python: คู่มือฉบับสมบูรณ์
- Pythonを使ったカスタムExcelレポートの生成:完全ガイド
- Generating Custom Excel Reports with Python: A Comprehensive Guide
- CeleryとRabbitMQの連携方法: 総合的な概要
- วิธีการทำงานร่วมกันระหว่าง Celery และ RabbitMQ: ภาพรวมที่ครอบคลุม
- How Celery and RabbitMQ Work Together: A Comprehensive Overview
- วิธีเริ่มต้นโครงการ Django ด้วย Vim, Docker Compose, MySQL, และ Bootstrap
- How to Start a Django Project with Vim, Docker Compose, MySQL, and Bootstrap
- OCPPシステムをゼロから構築するための包括的ガイド
- ทำไมการเข้าใจ Design Pattern จึงสำคัญสำหรับโครงการขนาดใหญ่เช่น Odoo
Articles
- การสร้างรายงาน Excel แบบกำหนดเองด้วย Python: คู่มือฉบับสมบูรณ์
- Pythonを使ったカスタムExcelレポートの生成:完全ガイド
- Generating Custom Excel Reports with Python: A Comprehensive Guide
- CeleryとRabbitMQの連携方法: 総合的な概要
- วิธีการทำงานร่วมกันระหว่าง Celery และ RabbitMQ: ภาพรวมที่ครอบคลุม
- How Celery and RabbitMQ Work Together: A Comprehensive Overview
- วิธีเริ่มต้นโครงการ Django ด้วย Vim, Docker Compose, MySQL, และ Bootstrap
- How to Start a Django Project with Vim, Docker Compose, MySQL, and Bootstrap
- ออกแบบและปรับปรุงเว็บไซต์ให้มีประสิทธิภาพ: คู่มือสำหรับเจ้าของธุรกิจและผู้จัดการไอที
- ウェブサイトをデザインし最適化する: 事業主とITマネージャー向けの包括的ガイド
- Design and Optimize Your Website: A Comprehensive Guide for Business Owners and IT Managers
- 音声の明瞭さを向上させる: ミュージシャンとサウンドエンジニアのためのガイド
- การเพิ่มความชัดเจนของเสียง: คู่มือสำหรับนักดนตรีและวิศวกรเสียง
- Unlocking Clarity in Audio: A Guide for Musicians and Sound Engineers
- AIツール(ChatGPT)の効果的な使い方
- วิธีทำงานกับ AI อย่างมีประสิทธิภาพ เช่น ChatGPT
- How to Work Effectively with AI Like ChatGPT
- データ駆動型インサイトで観光を向上させる方法:日本から学ぶ
- การใช้ข้อมูลเพื่อพัฒนาการท่องเที่ยว: เรียนรู้จากญี่ปุ่น
- How Data-Driven Insights Can Improve Tourism: Lessons from Japan
Our Products
Related Posts
- การสร้างรายงาน Excel แบบกำหนดเองด้วย Python: คู่มือฉบับสมบูรณ์
- Pythonを使ったカスタムExcelレポートの生成:完全ガイド
- Generating Custom Excel Reports with Python: A Comprehensive Guide
- CeleryとRabbitMQの連携方法: 総合的な概要
- วิธีการทำงานร่วมกันระหว่าง Celery และ RabbitMQ: ภาพรวมที่ครอบคลุม
- How Celery and RabbitMQ Work Together: A Comprehensive Overview
- วิธีเริ่มต้นโครงการ Django ด้วย Vim, Docker Compose, MySQL, และ Bootstrap
- How to Start a Django Project with Vim, Docker Compose, MySQL, and Bootstrap
- OCPPシステムをゼロから構築するための包括的ガイド
- ทำไมการเข้าใจ Design Pattern จึงสำคัญสำหรับโครงการขนาดใหญ่เช่น Odoo
Articles
- การสร้างรายงาน Excel แบบกำหนดเองด้วย Python: คู่มือฉบับสมบูรณ์
- Pythonを使ったカスタムExcelレポートの生成:完全ガイド
- Generating Custom Excel Reports with Python: A Comprehensive Guide
- CeleryとRabbitMQの連携方法: 総合的な概要
- วิธีการทำงานร่วมกันระหว่าง Celery และ RabbitMQ: ภาพรวมที่ครอบคลุม
- How Celery and RabbitMQ Work Together: A Comprehensive Overview
- วิธีเริ่มต้นโครงการ Django ด้วย Vim, Docker Compose, MySQL, และ Bootstrap
- How to Start a Django Project with Vim, Docker Compose, MySQL, and Bootstrap
- ออกแบบและปรับปรุงเว็บไซต์ให้มีประสิทธิภาพ: คู่มือสำหรับเจ้าของธุรกิจและผู้จัดการไอที
- ウェブサイトをデザインし最適化する: 事業主とITマネージャー向けの包括的ガイド
- Design and Optimize Your Website: A Comprehensive Guide for Business Owners and IT Managers
- 音声の明瞭さを向上させる: ミュージシャンとサウンドエンジニアのためのガイド
- การเพิ่มความชัดเจนของเสียง: คู่มือสำหรับนักดนตรีและวิศวกรเสียง
- Unlocking Clarity in Audio: A Guide for Musicians and Sound Engineers
- AIツール(ChatGPT)の効果的な使い方
- วิธีทำงานกับ AI อย่างมีประสิทธิภาพ เช่น ChatGPT
- How to Work Effectively with AI Like ChatGPT
- データ駆動型インサイトで観光を向上させる方法:日本から学ぶ
- การใช้ข้อมูลเพื่อพัฒนาการท่องเที่ยว: เรียนรู้จากญี่ปุ่น
- How Data-Driven Insights Can Improve Tourism: Lessons from Japan