Building a Multi-Market Breakout Stock Screener in Python
📈 Introduction
In the fast-paced world of stock trading, identifying breakouts—moments when a stock’s price pushes above resistance with strong volume—can lead to powerful opportunities. To automate this process, we developed a multi-market breakout stock screener using Python.
This tool scans across markets like the NYSE, Nikkei 50, and Vietnam 50, analyzing price and volume data to pinpoint potential breakout candidates — and it even generates candlestick charts automatically.
🧠 System Overview
The project consists of three modules that work together seamlessly:
| File | Purpose |
|---|---|
test10.py |
The heart of the system — fetches data and applies breakout screening logic. |
breakout.py |
Provides a clean command-line interface (CLI) for running the screener. |
ui_breakout.py |
A graphical user interface (GUI) built with Tkinter for intuitive use. |
Architecture
flowchart TD
A["ui_breakout.py (GUI Interface)"] --> B["breakout.py (CLI Wrapper)"]
B --> C["test10.py (Core Screener)"]
C --> D["Yahoo Finance API"]
C --> E["Chart Generator (Plotly HTML/PNG)"]
⚙️ How It Works
1. Data Collection
The screener fetches three months of daily stock data from Yahoo Finance for top stocks in each market.
Tickers are automatically loaded (e.g., top 50 by market cap for NYSE, Nikkei, and Vietnam).
2. Screening Logic
The script applies a set of breakout filters:
- Recent High: The close price must exceed the previous
lookbackperiod high. - Volume Surge: The trading volume must exceed the average by a configurable multiple (e.g., 1.5×).
- Liquidity Filter: Ensures sufficient dollar volume to avoid illiquid stocks.
- Weekly Confirmation (optional): Confirms breakouts on weekly timeframes.
Example core logic:
if is_breakout(df_t,
lookback=lookback,
volume_mult=volume_mult,
min_margin=min_margin,
min_close_pct=min_close_pct,
weekly_confirm=weekly_confirm,
weekly_lookback=weekly_lookback):
results.append(t)
The program can retry downloads automatically if rate-limited and runs in batches for efficiency.
🌏 Multi-Market Scanning
You can screen multiple markets simultaneously:
- 🇺🇸 NYSE
- 🇯🇵 Nikkei 50
- 🇻🇳 Vietnam 50
- 🇨🇳 SSE 50
- 🇭🇰 HSI 50
- 🇪🇺 Euronext
- 🇺🇸 S&P 50 / 500
Each market uses a tailored ticker list and outputs separate breakout results and charts.
📊 Chart Generation
After detecting breakout candidates, the system can automatically create candlestick charts using Plotly.
Each chart shows:
- Price and volume data
- Recent highs and breakout zones
- Clear visual confirmation of the breakout setup
Example command:
python breakout.py --markets nyse,nikkei50 --charts --chart-format html
Charts are saved under:
charts/<market>/<ticker>.html
🖥️ Graphical User Interface (GUI)
For users who prefer a visual interface, the Tkinter-based GUI (ui_breakout.py) provides:
✅ Market selection checkboxes
✅ Adjustable filters and thresholds
✅ Real-time log output
✅ Run and cancel buttons
✅ Automatic chart previews

The GUI executes the same backend logic but allows easy exploration without command-line input.
🔧 Example Usage
python breakout.py \
--markets sp500,nyse \
--lookback 20 \
--volume-mult 1.8 \
--charts \
--weekly-confirm
Sample output:
=========> NYSE breakouts: ['AAPL', 'NVDA', 'LMT']
=========> Nikkei50 breakouts: ['SONY', 'TOYOTA']
Saved 12 breakout chart(s) under 'charts/nyse/*.html'
💡 Use Cases
- Swing traders can identify early momentum setups.
- Quant developers can integrate this logic into automated pipelines.
- Analysts and educators can visualize live breakouts in class or reports.
🚀 Future Enhancements
- Add RSI / moving average filters
- Integrate Telegram or Line alerts
- Deploy as a web dashboard with FastAPI
- Include auto-updating market data and backtesting
🧭 Conclusion
This breakout screener demonstrates how Python + yfinance + Plotly can create a professional-grade stock analysis tool.
Whether you prefer CLI or GUI, it helps traders spot breakout opportunities early and visually confirm them before the crowd reacts.
Get in Touch with us
Related Posts
- 基于启发式与新闻情绪的短期价格方向评估(Python)
- Estimating Short-Term Price Direction with Heuristics and News Sentiment (Python)
- Rust vs Python:AI 与大型系统时代的编程语言选择
- Rust vs Python: Choosing the Right Tool in the AI & Systems Era
- How Software Technology Can Help Chanthaburi Farmers Regain Control of Fruit Prices
- AI 如何帮助发现金融机会
- How AI Helps Predict Financial Opportunities
- 在 React Native 与移动应用中使用 ONNX 模型的方法
- How to Use an ONNX Model in React Native (and Other Mobile App Frameworks)
- 叶片病害检测算法如何工作:从相机到决策
- How Leaf Disease Detection Algorithms Work: From Camera to Decision
- Smart Farming Lite:不依赖传感器的实用型数字农业
- Smart Farming Lite: Practical Digital Agriculture Without Sensors
- 为什么定制化MES更适合中国工厂
- Why Custom-Made MES Wins Where Ready-Made Systems Fail
- How to Build a Thailand-Specific Election Simulation
- When AI Replaces Search: How Content Creators Survive (and Win)
- 面向中国市场的再生资源金属价格预测(不投机、重决策)
- How to Predict Metal Prices for Recycling Businesses (Without Becoming a Trader)
- Smart Durian Farming with Minimum Cost (Thailand)













