Building a Multi-Market Breakout Stock Screener in Python
📈 Introduction
In the fast-paced world of stock trading, identifying breakouts—moments when a stock’s price pushes above resistance with strong volume—can lead to powerful opportunities. To automate this process, we developed a multi-market breakout stock screener using Python.
This tool scans across markets like the NYSE, Nikkei 50, and Vietnam 50, analyzing price and volume data to pinpoint potential breakout candidates — and it even generates candlestick charts automatically.
🧠 System Overview
The project consists of three modules that work together seamlessly:
| File | Purpose |
|---|---|
test10.py |
The heart of the system — fetches data and applies breakout screening logic. |
breakout.py |
Provides a clean command-line interface (CLI) for running the screener. |
ui_breakout.py |
A graphical user interface (GUI) built with Tkinter for intuitive use. |
Architecture
flowchart TD
A["ui_breakout.py (GUI Interface)"] --> B["breakout.py (CLI Wrapper)"]
B --> C["test10.py (Core Screener)"]
C --> D["Yahoo Finance API"]
C --> E["Chart Generator (Plotly HTML/PNG)"]
⚙️ How It Works
1. Data Collection
The screener fetches three months of daily stock data from Yahoo Finance for top stocks in each market.
Tickers are automatically loaded (e.g., top 50 by market cap for NYSE, Nikkei, and Vietnam).
2. Screening Logic
The script applies a set of breakout filters:
- Recent High: The close price must exceed the previous
lookbackperiod high. - Volume Surge: The trading volume must exceed the average by a configurable multiple (e.g., 1.5×).
- Liquidity Filter: Ensures sufficient dollar volume to avoid illiquid stocks.
- Weekly Confirmation (optional): Confirms breakouts on weekly timeframes.
Example core logic:
if is_breakout(df_t,
lookback=lookback,
volume_mult=volume_mult,
min_margin=min_margin,
min_close_pct=min_close_pct,
weekly_confirm=weekly_confirm,
weekly_lookback=weekly_lookback):
results.append(t)
The program can retry downloads automatically if rate-limited and runs in batches for efficiency.
🌏 Multi-Market Scanning
You can screen multiple markets simultaneously:
- 🇺🇸 NYSE
- 🇯🇵 Nikkei 50
- 🇻🇳 Vietnam 50
- 🇨🇳 SSE 50
- 🇭🇰 HSI 50
- 🇪🇺 Euronext
- 🇺🇸 S&P 50 / 500
Each market uses a tailored ticker list and outputs separate breakout results and charts.
📊 Chart Generation
After detecting breakout candidates, the system can automatically create candlestick charts using Plotly.
Each chart shows:
- Price and volume data
- Recent highs and breakout zones
- Clear visual confirmation of the breakout setup
Example command:
python breakout.py --markets nyse,nikkei50 --charts --chart-format html
Charts are saved under:
charts/<market>/<ticker>.html
🖥️ Graphical User Interface (GUI)
For users who prefer a visual interface, the Tkinter-based GUI (ui_breakout.py) provides:
✅ Market selection checkboxes
✅ Adjustable filters and thresholds
✅ Real-time log output
✅ Run and cancel buttons
✅ Automatic chart previews

The GUI executes the same backend logic but allows easy exploration without command-line input.
🔧 Example Usage
python breakout.py \
--markets sp500,nyse \
--lookback 20 \
--volume-mult 1.8 \
--charts \
--weekly-confirm
Sample output:
=========> NYSE breakouts: ['AAPL', 'NVDA', 'LMT']
=========> Nikkei50 breakouts: ['SONY', 'TOYOTA']
Saved 12 breakout chart(s) under 'charts/nyse/*.html'
💡 Use Cases
- Swing traders can identify early momentum setups.
- Quant developers can integrate this logic into automated pipelines.
- Analysts and educators can visualize live breakouts in class or reports.
🚀 Future Enhancements
- Add RSI / moving average filters
- Integrate Telegram or Line alerts
- Deploy as a web dashboard with FastAPI
- Include auto-updating market data and backtesting
🧭 Conclusion
This breakout screener demonstrates how Python + yfinance + Plotly can create a professional-grade stock analysis tool.
Whether you prefer CLI or GUI, it helps traders spot breakout opportunities early and visually confirm them before the crowd reacts.
Get in Touch with us
Related Posts
- 深度学习 + 新闻情绪分析进行股票价格预测(完整实战指南)
- Using Deep Learning + News Sentiment to Predict Stock Prices (A Practical Guide)
- 用 AI 改造 COI 管理:真实工厂案例解析(Hybrid Rasa + LangChain)
- How AI Transforms COI Management: A Real Factory Use Case (Hybrid Rasa + LangChain)
- SimpliAgentic —— 新一代自律智能工厂,从这里开始
- SimpliAgentic — The Future of Autonomous Factory Automation Has Arrived
- 为什么理解 Android Internals(安卓内部机制)如此重要?——帮助企业打造高价值系统级服务
- Why Android Internals Matter — And the High-Value Services Your Business Can Build With Them
- 为什么企业应该开发自己的电商系统(而不是依赖租用型平台)
- Why Your Business Should Build Its Own E-Commerce System (Instead of Renting One)
- Upstream、Downstream 和 Fork:Android 与 Linux 开发者必须理解的核心概念
- Upstream, Downstream, and Fork: A Clear Guide for Android & Linux Developers
- NVIDIA、Microsoft、OpenAI、Google、Oracle 以及 AMD:正在共同推动 AI 泡沫如何形成?
- The Real AI Bubble: How NVIDIA, Microsoft, OpenAI, Google, Oracle — and Now AMD — Shape the Future of Compute
- 深度学习在房地产开发中的应用
- Deep Learning in Property Development
- 代码修复与遗留系统维护服务 —— Simplico 助力企业保持系统稳定、安全、高效
- Code Fixing & Legacy System Maintenance — Keep Your Business Running Smoothly with Simplico
- Python 深度学习在工厂自动化中的应用:2025 全面指南
- Python Deep Learning in Factory Automation: A Complete Guide (2025)













